10 research outputs found

    Parâmetros populacionais da raça ovina Santa Inês no Brasil

    Get PDF
    The objective of this work was to evaluate the population structure of the sheep breed Santa Inês raised in Brazil. Pedigree data from 13,216 animals, belonging to 53 herds from eight Brazilian states, born between 1976 and 2010, were used. The program Endog was used for pedigree analysis and estimation of population parameters. From the total number of animals studied, 80.86% had a pedigree in the first ascendancy, 73.78% in the second, and 67.75% in the third. The maximum number of known generations was 19, and the average of equivalent generations was 4.67. The average generation interval was 3.22±1.77 years. The mean effective population size was of 172.5 animals. The number of founder animals was 829, but the effective number of founders was only 50. The 17 main ancestors accounted for 50% of the total genetic variability. The average relatedness coefficient was of 3.87% and the average inbreeding coefficient, of 6.92%. Despite the satisfactory average inbreeding coefficient in recent generations, this coefficient requires monitoring because of its proximity to the recommended limit. Gene flow among herds is the main factor for the increase of effective size and the maintenance of genetic variability in the breed Santa Inês.O objetivo deste trabalho foi avaliar a estrutura populacional de ovinos da raça Santa Inês criados no Brasil. Foram utilizados dados de pedigree de 13.216 animais, pertencentes a 53 rebanhos de oito estados brasileiros, nascidos no período de 1976 a 2010. O programa Endog foi utilizado para análise do pedigree e estimação dos parâmetros populacionais. Do total de animais estudados, 80,86% apresentaram pedigree na primeira ascendência, 73,78% na segunda e 67,75% na terceira. O número máximo de gerações conhecidas foi de 19, e a média de gerações equivalentes foi de 4,67. A média do intervalo de gerações foi de 3,22±1,77 anos. O tamanho efetivo da população apresentou média de 172,5 animais. O número de animais fundadores foi 829, mas o número efetivo de fundadores foi apenas 50. Os 17 principais ancestrais explicaram 50% da variabilidade genética total. O coeficiente médio de relação foi de 3,87% e o de endogamia, de 6,92%. Apesar do satisfatório coeficiente médio de endogamia nas últimas gerações, este coeficiente requer monitoramento por sua proximidade do limite recomendável. O fluxo de genes entre os rebanhos é o principal fator para o aumento do tamanho efetivo e a manutenção da variabilidade genética da raça Santa Inês

    Eficiência de uso da água de mamoneiras nas condições agroecológicas do semiárido/Water use efficiency of castor bean variety in agroecological semiarid conditions

    Get PDF
    A eficiência no uso da água pela cultura da mamona é um parâmetro essencial para a avaliação das cultivares no semiárido e precisa ser feito, preferencialmente, observando os componentes do balanço de água no solo influentes no sistema. Assim, devem-se computar as entradas e saídas de água no volume de controle do sistema solo-planta-atmosfera. Nesse sentido, o objetivo da proposta é avaliar o comportamento de oito cultivares de mamoneira (IAC 2028, IAC 226, IAC Guarani, BRS Nordestina, BRS Paraguaçu, BRS Energia, EDBA MPA 11, EBDA MPB 01) quanto aos componentes do balanço de água no solo e calcular a eficiência no uso da água (EUA), num delineamento em blocos aleatorizados, com três repetições e 4 plantas por parcela experimental. A EUA foi calculada com base na razão entre produtividade e evapotranspiração real. Foram instalados tensiômetros a 0,5 e 0,7 m de profundidade para a determinação do gradiente de potencial total da água no solo, utilizado no cálculo das densidades de fluxo (drenagem interna ou ascensão capilar). O tensiômetro instalado a 0,6 m foi utilizado para a medida do conteúdo de água, a qual é usada para a estimativa da condutividade hidráulica, a qual foi determinada pelo método do perfil instantâneo. A precipitação pluvial foi medida numa estação meteorológica automática, instalada na área experimental, observando-se que a precipitação pluvial afeta diretamente a variação de armazenagem, em que os períodos de maior precipitação os balanços são positivos e os de menor precipitação tem valores do balanço negativos. As variações observadas nos valores de ascensão capilar e drenagem interna são pequenas, porém, revelam as diferenças de demanda entre as cultivares; as maiores produtividade e EUA foram determinadas para a cultivar BRS Paraguaçu, não se diferindo das demais cultivares, exceto da cultivar BRS Energia

    Parâmetros populacionais da raça ovina Santa Inês no Brasil

    Get PDF
    O objetivo deste trabalho foi avaliar a estrutura populacional de ovinos da raça Santa Inês criados no Brasil. Foram utilizados dados de pedigree de 13.216 animais, pertencentes a 53 rebanhos de oito estados brasileiros, nascidos no período de 1976 a 2010. O programa Endog foi utilizado para análise do pedigree e estimação dos parâmetros populacionais. Do total de animais estudados, 80,86% apresentaram pedigree na primeira ascendência, 73,78% na segunda e 67,75% na terceira. O número máximo de gerações conhecidas foi de 19, e a média de gerações equivalentes foi de 4,67. A média do intervalo de gerações foi de 3,22±1,77 anos. O tamanho efetivo da população apresentou média de 172,5 animais. O número de animais fundadores foi 829, mas o número efetivo de fundadores foi apenas 50. Os 17 principais ancestrais explicaram 50% da variabilidade genética total. O coeficiente médio de relação foi de 3,87% e o de endogamia, de 6,92%. Apesar do satisfatório coeficiente médio de endogamia nas últimas gerações, este coeficiente requer monitoramento por sua proximidade do limite recomendável. O fluxo de genes entre os rebanhos é o principal fator para o aumento do tamanho efetivo e a manutenção da variabilidade genética da raça Santa Inês

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore