447 research outputs found

    Families with infants: a general approach to solve hard partition problems

    Full text link
    We introduce a general approach for solving partition problems where the goal is to represent a given set as a union (either disjoint or not) of subsets satisfying certain properties. Many NP-hard problems can be naturally stated as such partition problems. We show that if one can find a large enough system of so-called families with infants for a given problem, then this problem can be solved faster than by a straightforward algorithm. We use this approach to improve known bounds for several NP-hard problems as well as to simplify the proofs of several known results. For the chromatic number problem we present an algorithm with O∗((2−ε(d))n)O^*((2-\varepsilon(d))^n) time and exponential space for graphs of average degree dd. This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput. Syst. 2010] that works for graphs of bounded maximum (as opposed to average) degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013]. For the traveling salesman problem we give an algorithm working in O∗((2−ε(d))n)O^*((2-\varepsilon(d))^n) time and polynomial space for graphs of average degree dd. The previously known results of this kind is a polyspace algorithm by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and an exponential space algorithm for bounded average degree by Cygan and Pilipczuk [ICALP 2013]. For counting perfect matching in graphs of average degree~dd we present an algorithm with running time O∗((2−ε(d))n/2)O^*((2-\varepsilon(d))^{n/2}) and polynomial space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at http://arxiv.org/abs/1410.220

    Mean Field Theory of Sandpile Avalanches: from the Intermittent to the Continuous Flow Regime

    Full text link
    We model the dynamics of avalanches in granular assemblies in partly filled rotating cylinders using a mean-field approach. We show that, upon varying the cylinder angular velocity ω\omega, the system undergoes a hysteresis cycle between an intermittent and a continuous flow regimes. In the intermittent flow regime, and approaching the transition, the avalanche duration exhibits critical slowing down with a temporal power-law divergence. Upon adding a white noise term, and close to the transition, the distribution of avalanche durations is also a power-law. The hysteresis, as well as the statistics of avalanche durations, are in good qualitative agreement with recent experiments in partly filled rotating cylinders.Comment: 4 pages, RevTeX 3.0, postscript figures 1, 3 and 4 appended

    Thermoelectrics Near the Mott Localization-Delocalization Transition

    Full text link
    We give an overview on current status of the theoretical research on Thermoelectricity for correlated materials. We derive the theoretical formulas which become exact at low and high temperature and discuss the intermediate temperature results. In particular, we show that within Dynamical Mean Field Theory the low temperature sign of the thermopower is not necessary the same as in LDA, and that significant non-universality is expected due to strong correlations.Comment: appeared in "Properties and Applications of Thermoelectric Materials", Edited by V. Zlatic and A.C. Hewson, Springe

    Sr2V3O9 and Ba2V3O9: quasi one-dimensional spin-systems with an anomalous low temperature susceptibility

    Full text link
    The magnetic behaviour of the low-dimensional Vanadium-oxides Sr2V3O9 and Ba2V3O9 was investigated by means of magnetic susceptibility and specific heat measurements. In both compounds, the results can be very well described by an S=1/2 Heisenberg antiferromagnetic chain with an intrachain exchange of J = 82 K and J = 94 K in Sr2V3O9 and Ba2V3O9, respectively. In Sr2V3O9, antiferromagnetic ordering at T_N = 5.3 K indicate a weak interchain exchange of the order of J_perp ~ 2 K. In contrast, no evidence for magnetic order was found in Ba2V3O9 down to 0.5 K, pointing to an even smaller interchain coupling. In both compounds, we observe a pronounced Curie-like increase of the susceptibility below 30 K, which we tentatively attribute to a staggered field effect induced by the applied magnetic field. Results of LDA calculations support the quasi one-dimensional character and indicate that in Sr2V3O9, the magnetic chain is perpendicular to the structural one with the magnetic exchange being transferred through VO4 tetrahedra.Comment: Submitted to Phy. Rev.

    Parametrization of nonlinear and chaotic oscillations in driven beam-plasma diodes

    Get PDF
    Nonlinear phenomena in a driven plasma diode are studied using a fluid code and the particle-in-cell simulation code XPDPI. When a uniform electron beam is injected to a bounded diode filled with uniform ion background, the beam is destabilized by the Pierce instability and a perturbation grows to exhibit nonlinear oscillations including chaos. Two standard routes to chaos, period doubling and quasiperiodicity, are observed. Mode lockings of various winding numbers are observed in an ac driven system. A new diagnostic quantity is used to parametrize various nonlinear oscillations.open10

    Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials

    Full text link
    Ab initio determination of model Hamiltonian parameters for strongly correlated materials is a key issue in applying many-particle theoretical tools to real narrow-band materials. We propose a self-contained calculation scheme to construct, with an ab initio approach, and solve such a Hamiltonian. The scheme uses a Wannier-function-basis set, with the Coulomb interaction parameter U obtained specifically for these Wannier functions via constrained Density functional theory (DFT) calculations. The Hamiltonian is solved by Dynamical Mean-Field Theory (DMFT) with the effective impurity problem treated by the Quantum Monte Carlo (QMC) method. Our scheme is based on the pseudopotential plane-wave method, which makes it suitable for developments addressing the challenging problem of crystal structural relaxations and transformations due to correlation effects. We have applied our scheme to the "charge transfer insulator" material nickel oxide and demonstrate a good agreement with the experimental photoemission spectra

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore