94 research outputs found

    Does Warming Enhance the Effects of Eutrophication in the Seagrass Posidonia oceanica?

    Get PDF
    Seagrass meadows are disappearing at rates comparable to those reported for mangroves, coral reefs, and tropical rainforests. One of the main causes of their decline is the so-called cultural eutrophication, i.e., the input of abnormal amounts of nutrients derived from human activities. Besides the impact of eutrophication at a local scale, the occurrence of additional stress factors such as global sea warming may create synergisms in detriment of seagrass meadows’ health. In the present study, we aimed to evaluate if plants undergoing chronic cultural eutrophication and plants growing in relatively pristine waters are more (or less) sensitive to heat stress, nutrient load and the combination of both stressors. To address this question, a mesocosm experiment was conducted using Posidonia oceanica collected from two environments with different nutrients load history. Plants were exposed in controlled conditions to high nutrient concentrations, increased temperature and their combination for 5 weeks, to assess the effect of the single stressors and their interaction. Our results revealed that plants experiencing chronic cultural eutrophication (EU) are more sensitive to further exposure to multiple stressors than plants growing in oligotrophic habitats (OL). OL and EU plants showed different morphological traits and physiological performances, which corroborates the role of local pressures in activating different strategies in response to global environmental changes. EU-plants appeared to be weaker during the treatments, showing the greatest percentage of mortality, particularly under increased temperature. Temperature and nutrient treatments showed opposite effects when tested individually and an offset response when combined. The activation of physiological strategies with high energetic expenses to cope with excess of nutrients and other stressors, could affect plants present and future persistence, particularly under eutrophic conditions. Our results represent a step forward in understanding the complex interactions that occur in natural environments. Moreover, unraveling intraspecific strategies and the role of local acclimation/adaptation in response to multiple stressors could be crucial for seagrass conservation strategies under a climate change scenario

    Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms

    Get PDF
    This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology

    Get PDF
    Marine natural products (MNPs) exhibit a wide range of pharmaceutically relevant bioactivities, including antibiotic, antiviral, anticancer, or anti-inflammatory properties. Besides marine macroorganisms such as sponges, algae, or corals, specifically marine bacteria and fungi have shown to produce novel secondary metabolites (SMs) with unique and diverse chemical structures that may hold the key for the development of novel drugs or drug leads. Apart from highlighting their potential benefit to humankind, this review is focusing on the manifold functions of SMs in the marine ecosystem. For example, potent MNPs have the ability to exile predators and competing organisms, act as attractants for mating purposes, or serve as dye for the expulsion or attraction of other organisms. A large compilation of literature on the role of MNPs in marine ecology is available, and several reviews evaluated the function of MNPs for the aforementioned topics. Therefore, we focused the second part of this review on the importance of bioactive compounds from crustose coralline algae (CCA) and their role during coral settlement, a topic that has received less attention. It has been shown that certain SMs derived from CCA and their associated bacteria are able to induce attachment and/or metamorphosis of many benthic invertebrate larvae, including globally threatened reef-building scleractinian corals. This review provides an overview on bioactivities of MNPs from marine microbes and their potential use in medicine as well as on the latest findings of the chemical ecology and settlement process of scleractinian corals and other invertebrate larvae

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil

    Full text link
    The technique of eddy correlation was used to measure the net ecosystem exchange over a woodland savanna (Cerrado Sensu stricto) site (Gleba Pé de Gigante) in southeast Brazil. The data set included measurements of climatological variables and soil respiration using static soil chambers. Data were collected during the period from 10 October 2000 to 30 March 2002. Measured soil respiration showed average values of 4.8 molCO2 m-2s-1 year round. Its seasonal differences varied from 2 to 8 molCO2 m-2s-1 (Q10 = 4.9) during the dry (April to August) and wet season, respectively, and was concurrent with soil temperature and moisture variability. The net ecosystem CO2 flux (NEE) variability is controlled by solar radiation, temperature and air humidity on diel course. Seasonally, soil moisture plays a strong role by inducing litterfall, reducing canopy photosynthetic activity and soil respiration. The net sign of NEE is negative (sink) in the wet season and early dry season, with rates around -25 kgC ha-1day-1, and values as low as 40 kgC ha-1day-1. NEE was positive (source) during most of the dry season, and changed into negative at the onset of rainy season. At critical times of soil moisture stress during the late dry season, the ecosystem experienced photosynthesis during daytime, although the net sign is positive (emission). Concurrent with dry season, the values appeared progressively positive from 5 to as much as 50 kgC ha-1day-1. The annual NEE sum appeared to be nearly in balance, or more exactly a small sink, equal to 0.1 0.3 tC ha-1yr-1, which we regard possibly as a realistic one, giving the constraining conditions imposed to the turbulent flux calculation, and favourable hypothesis of succession stages, climatic variability and CO2 fertilization

    Using linear programming to analyze and optimize stochastic flow lines

    Full text link
    This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time, to determine a production rate estimate. As our methodology is purely numerical, it offers the full modeling flexibility of stochastic simulation with respect to the probability distribution of processing times. However, unlike discrete-event simulation models, it also offers the optimization power of linear programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines
    corecore