5 research outputs found

    Abstract Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland

    No full text
    Finland, during a field campaign in June 14–21, 2000, was used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) LAI algorithm. The field LAI data was first related to 30-m resolution Enhanced Thermal Mapper Plus (ETM+) images using empirical methods to create a high-resolution LAI map. The analysis of empirical approaches indicates that preliminary segmentation of the image followed by empirical modeling with the resulting patches, was an effective approach to developing an LAI validation surface. Comparison of the aggregated high-resolution LAI map and corresponding MODIS LAI retrievals suggests satisfactory behavior of the MODIS LAI algorithm although variation in MODIS LAI product is higher than expected. The MODIS algorithm, adjusted to high resolution, generally overestimates the LAI due to the influence of the understory vegetation. This indicates the need for improvements in the algorithm. An improved correlation between field measurements and the reduced simple ratio (RSR) suggests that the shortwave infrared (SWIR) band may provide valuable information for needle-leaf forests

    A New Parameterization of Canopy Spectral Response to Incident Solar

    No full text
    A small set of independent variables generally seems to suffice when attempting to describe the spectral response of a vegetation canopy to incident solar radiation. This set includes the soil reflectance, the single-scattering albedo, canopy transmittance, reflectance and interception, the portion of uncollided radiation in the total incident radiation, and portions of collided canopy transmittance and interception. All of these are measurable; they satisfy a simple system of equations and constitute a set that fully describes the law of energy conservation in vegetation canopies at any wavelength in the visible and near-infrared part of the solar spectrum. Further, the system of equations specifies the relationship between the optical properties at the leaf and the canopy scales. Thus, the information content of hyperspectral data can be fully exploited if these variables can be retrieved, for they can be more directly related to some of the physical properties of the canopy (e.g. leaf area index). This paper demonstrates this concept through retrievals of single-scattering albedo, canopy absorptance, portions of uncollided and collided canopy transmittance, and interception from hyperspectral data collected during a field campaign in Ruokolahti, Finland, June 14 -- 21, 2000. The retrieved variables are then used to estimate canopy leaf area index, vegetation ground cover, and also the ratio of direct to total incident solar radiation at blue, green, red, and near-infrared spectral intervals

    Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges

    No full text
    corecore