130 research outputs found

    On the taxonomic resolution of pollen and spore records of Earth’s vegetation

    Get PDF
    Premise of research. Pollen and spores (sporomorphs) are a valuable record of plant life and have provided information on subjects ranging from the nature and timing of evolutionary events to the relationship between vegetation and climate. However, sporomorphs can be morphologically similar at the species, genus, or family level. Studies of extinct plant groups in pre-Quaternary time often include dispersed sporomorph taxa whose parent plant is known only to the class level. Consequently, sporomorph records of vegetation suffer from limited taxonomic resolution and typically record information about plant life at a taxonomic rank above species.Methodology. In this article, we review the causes of low taxonomic resolution, highlight examples where this has hampered the study of vegetation, and discuss the strategies researchers have developed to overcome the low taxonomic resolution of the sporomorph record. Based on this review, we offer our views on how greater taxonomic precision might be attained in future work. Pivotal results. Low taxonomic resolution results from a combination of several factors, including inadequate reference collections, the absence of sporomorphs in situ in fossilized reproductive structures, and damage following fossilization. A primary cause is the difficulty of accurately describing the very small morphological differences between species using descriptive terminology, which results in palynologists classifying sporomorphs conservatively at the genus or family level to ensure that classifications are reproducible between samples and between researchers. Conclusions. In our view, the most promising approach to the problem of low taxonomic resolution is a combination of high-resolution imaging and computational image analysis. In particular, we encourage palynologists to explore the utility of microscopy techniques that aim to recover morphological information from below the diffraction limit of light and to employ computational image analyses to consistently quantify small morphological differences between species

    Spatially Aware Dictionary Learning and Coding for Fossil Pollen Identification

    Full text link
    We propose a robust approach for performing automatic species-level recognition of fossil pollen grains in microscopy images that exploits both global shape and local texture characteristics in a patch-based matching methodology. We introduce a novel criteria for selecting meaningful and discriminative exemplar patches. We optimize this function during training using a greedy submodular function optimization framework that gives a near-optimal solution with bounded approximation error. We use these selected exemplars as a dictionary basis and propose a spatially-aware sparse coding method to match testing images for identification while maintaining global shape correspondence. To accelerate the coding process for fast matching, we introduce a relaxed form that uses spatially-aware soft-thresholding during coding. Finally, we carry out an experimental study that demonstrates the effectiveness and efficiency of our exemplar selection and classification mechanisms, achieving 86.13%86.13\% accuracy on a difficult fine-grained species classification task distinguishing three types of fossil spruce pollen.Comment: CVMI 201

    Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.

    Get PDF
    Published onlineHistorical ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.0072265Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth's past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals.This research was supported by funding from a European Union Marie Curie Intra-European Fellowship (FILE-PIEF-GA-2009-25378 to CMB), a Marie Curie Career Integration Grant (PyroMap PCIG10-GA-2011-303610 to CMB), a University of Exeter Outward Mobility Academic Fellowship (to CMB) and the US National Science Foundation (DBI-1052997 to SWP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Bioinformatic and biometric methods in plant morphology

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141215/1/aps31400071.pd

    A morphometric analysis of vegetation patterns in dryland ecosystems

    Get PDF
    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems

    Accuracy and consistency of grass pollen identification by human analysts using electron micrographs of surface ornamentation

    Get PDF
    • Premise of the study: Humans frequently identify pollen grains at a taxonomic rank above species. Grass pollen is a classic case of this situation, which has led to the development of computational methods for identifying grass pollen species. This paper aims to provide context for these computational methods by quantifying the accuracy and consistency of human identification. • Methods: We measured the ability of nine human analysts to identify 12 species of grass pollen using scanning electron microscopy images. These are the same images that were used in computational identifications. We have measured the coverage, accuracy, and consistency of each analyst, and investigated their ability to recognize duplicate images. • Results: Coverage ranged from 87.5% to 100%. Mean identification accuracy ranged from 46.67% to 87.5%. The identification consistency of each analyst ranged from 32.5% to 87.5%, and each of the nine analysts produced considerably different identification schemes. The proportion of duplicate image pairs that were missed ranged from 6.25% to 58.33%. • Discussion: The identification errors made by each analyst, which result in a decline in accuracy and consistency, are likely related to psychological factors such as the limited capacity of human memory, fatigue and boredom, recency effects, and positivity bias

    Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen

    No full text
    The visualization of taxonomically diagnostic features of individual pollen grains can be a challenge for many ecologically and phylogenetically important pollen types. The resolution of traditional optical microscopy is limited by the diffraction of light (250 nm), while high resolution tools such as electron microscopy are limited by laborious preparation and imaging workflows. Airyscan confocal superresolution and structured illumination superresolution (SR-SIM) microscopy are powerful new tools for the study of nanoscale pollen morphology and three-dimensional structure that can overcome these basic limitations. This study demonstrates their utility in capturing morphological details below the diffraction limit of light. Using three distinct pollen morphotypes (Croton hirtus, Dactylis glomerata, and Helianthus sp.) and contrast-enhancing fluorescent staining, we were able to assess the effectiveness of the Airyscan and SR-SIM. We further demonstrate that these new superresolution methods can be easily applied to the study of fossil pollen material

    Bound state solutions of the Manning-Rosen potential

    Get PDF
    Using the asymptotic iteration method (AIM), we have obtained analytical approximations to the â„“\ell-wave solutions of the Schr\"{o}dinger equation with the Manning-Rosen potential. The equation of energy eigenvalues equation and the corresponding wavefunctions have been obtained explicitly. Three different Pekeris-type approximation schemes have been used to deal with the centrifugal term. To show the accuracy of our results, we have calculated the eigenvalues numerically for arbitrary quantum numbers nn and â„“\ell for some diatomic molecules (HCl, CH, LiH and CO). It is found that the results are in good agreement with other results found in the literature. A straightforward extension to the s-wave case and HultheËŠ\acute{e}n potential case are also presented.Comment: 14 pages, 6 table

    Approaches for advancing scientific understanding of macrosystems

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques

    Get PDF
    Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed
    • …
    corecore