818 research outputs found

    Introduction to Library Trends 31 (3) Winter 1983: Current Trends in Reference Services

    Get PDF
    published or submitted for publicatio

    Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence

    Full text link
    Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618--8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal from the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy 'genuine' and 'hoax' objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.Comment: 38 pages, 19 figures; revised for peer review and copy editing; addition to SI for realistic scenario projections; minor length reduction for journal requirement

    Use of selected methods multi-criteria decision

    Get PDF
    The purpose of multi-criteria decision models is to help decision maker to evaluate each alternative and to rank them in descending order of performance. This study analyses the base of concept of Multiple Attribute Decision Making for using in different areas. The aim of this paper is to describe the concept of multiple attribute decision making. Achieving this purpose, TOPSIS technique is used as decision making tools. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3456

    Influence of the inter-block pillars stability on the mechanized overhead stopping method

    Get PDF

    High-accuracy Geant4 simulation and semi-analytical modeling of nuclear resonance fluorescence

    Full text link
    Nuclear resonance fluorescence (NRF) is a photonuclear interaction that enables highly isotope-specific measurements in both pure and applied physics scenarios. High-accuracy design and analysis of NRF measurements in complex geometries is aided by Monte Carlo simulations of photon physics and transport, motivating Jordan and Warren (2007) to develop the G4NRF codebase for NRF simulation in Geant4. In this work, we enhance the physics accuracy of the G4NRF code and perform improved benchmarking simulations. The NRF cross section calculation in G4NRF, previously a Gaussian approximation, has been replaced with a full numerical integration for improved accuracy in thick-target scenarios. A high-accuracy semi-analytical model of expected NRF count rates in a typical NRF measurement is then constructed and compared against G4NRF simulations for both simple homogeneous and more complex heterogeneous geometries. Agreement between rates predicted by the semi-analytical model and G4NRF simulation is found at a level of 1%{\sim}1\% in simple test cases and 3%{\sim}3\% in more realistic scenarios, improving upon the 20%{\sim}20\% level of the initial benchmarking study and establishing a highly-accurate NRF framework for Geant4.Comment: 16 pages, 6 figures, revised for peer revie

    Characterization of the influence of building a road on the stability of the tunnel lining in a Banska Bystrica railway tunnel

    Get PDF
    This paper deals with solving the problem of tunnel lining stability in a railway tunnel. The road cut was made into the overburden of the tunnel. I investigated the effect of the road cut on the stability of tunnel lining. The FLAC3D mathematical modelling technique was used for this purpose. The solution consist of: - - - - - - - - - - - -modelling the initial situation before building the intervention,Determing the internal characteristics of the tunnel lining in its original state,modelling the situation after making the road cut,Determing the internal characteristics of the tunnel lining after the building intervention,Comparison of the internal characteristics of the tunnel lining before and after the building intervention.In the model, I used these general geotechnical properties of the rock environment and the tunnel lining:Material Youngus modulus [MPa] Poissons RatioClay 8 0,42Weakly wheathered calcite 3 000 0,25Hard wheathered calcite 600 0,30Fill 300 0,25Lining 20 000 0,20The arbitration of the tunnel lining stability was executed on the basis of the Mohr Coulomb limit of the state. Building the road cut does not lead to loss of stability in the tunnel a at Station 1.225 00 or at Station 1.300 00
    corecore