99 research outputs found

    Association of Genetic Variants in NUDT15 with Thiopurine-Induced Myelosuppression in Patients with Inflammatory Bowel Disease

    Get PDF
    Funding Information: reported serving as a consultant for AbbVie UK; receiving honoraria from Falk and AbbVie UK; receiving grants from Crohn’s & Colitis UK and Tillott’s Pharmaceuticals; having a fellowship from the UK National Institute for Health Research; and receiving travel reimbursement from Merck Sharp & Dohme and Norgine. Dr Heap reported receiving travel reimbursement from AbbVie; and being a current employee of AbbVie and owning stock in the company. Dr Andersen reported receiving personal fees from Merck Sharp & Dohme and Janssen. Dr Ananthakrishnan reported receiving a grant from Pfizer; and receiving personal fees from Takeda. Dr Beaugerie reported receiving advisory board fees from Allergan, Janssen, and Pfizer; receiving a grant from Hospira; and receiving grants and honoraria from AbbVie, Merck Sharp & Dohme, Ferring, Takeda, and Tillott’s Pharmaceuticals. Dr Cummings reported receiving personal fees from AbbVie, Takeda, Biogen, Janssen, Merck Sharp & Dohme, Amgen, Hakim Pharmaceuticals, and Pfizer/Hospira; and receiving grants from Takeda, Biogen, AstraZeneca, and Pfizer/Hospira. Dr Halfvarson reported receiving personal fees from AbbVie, Hospira, Janssen, Medivir, Merck Sharp & Dohme, Pfizer, RenapharmaVifor, Takeda, Tillott’s Pharmaceuticals, Celgene, Sandoz, and Shire; and receiving grants from Janssen, Merck Sharp & Dohme, and Takeda. Dr Hart reported receiving advisory board fees from AbbVie, Atlantic, Bristol-Myers Squibb, Celltrion, Janssen, Merck Sharp & Dohme, Pfizer, Shire, and Takeda; receiving honoraria from Falk and Ferring; and receiving a grant from Takeda. Dr Irving reported receiving personal fees from Janssen, AbbVie, Takeda, Ferring, Pfizer, Lilly, Merck Sharp & Dohme, Samsung, and Sandoz; and receiving grants from Takeda and Merck Sharp & Dohme. Dr Lindsay reported receiving advisory board fees from Atlantic Health, AbbVie UK/global, Merck Sharp & Dohme, Shire UK, Vifor Pharma, Ferring International, Celltrion, Takeda, Napp, Pfizer, and Janssen; serving as a consultant for AbbVie UK/global, Takeda, and Pfizer; receiving grants from Shire UK, AbbVie UK/global, Warner Chilcott, Funding Information: Takeda, Hospira, Ferring International, and Merck Sharp & Dohme; receiving honoraria from Takeda, Cornerstones US, Tillott’s Pharmaceuticals, Napp, Shire International, Janssen, AbbVie, and Pfizer; and receiving travel reimbursement from AbbVie UK, Merck Sharp & Dohme, Warner Chilcott, Takeda, and Shire International. Dr McGovern reported receiving grants from the National Institutes of Health, Helmsley Charitable Trust, and Janssen; and serving as a consultant for Pfizer, Q Biologics, Cidara, Gilead, and Janssen. Dr Seksik reported receiving advisory board fees from Astellas; receiving honoraria from Takeda, AbbVie, and Ferring; and receiving grants from Merck Sharp & Dohme and Biocodex. Dr Sokol reported receiving grants from Biocodex, Danone, and BiomX; serving as a consultant for Enterome, Takeda, AbbVie, Roche, Amgen, Danone, BiomX, Ferring, Bristol-Myers Squibb, Astellas, Merck Sharp & Dohme, Novartis, Tillott’s Pharmaceuticals, and Biose; and being the co-founder of Nextbiotix. Dr Annese reported receiving advisory board fees from Takeda, AbbVie, and Medtronic; and receiving honoraria from Janssen, Takeda, AbbVie, and Medtronic. Dr Weersma reported receiving grants from Takeda, Ferring, and Tramedico; and receiving personal fees from AbbVie. Dr Goodhand reported receiving honoraria from Falk, AbbVie, and Shield Therapeutics. Dr Kennedy reported serving as a consultant for Falk; receiving honoraria from Falk, Allergan, Pharmacosmos, and Takeda; and being a deputy editor of Alimentary Pharmacology & Therapeutics. Dr Ahmad reported receiving unrestricted grants, advisory board fees, speaker honoraria, and support to attend international meetings from AbbVie, Merck Sharp & Dohme, Janssen, Takeda, Ferring, Tillott’s Pharmaceuticals, Ferring, Pfizer, Napp, Celltrion, and Hospira. No other disclosures were reported. Funding Information: Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California), Alistair McNair, PhD (Queen Elizabeth Hospital, London, UK), Anita Modi, MD (Luton and Dunstable University Hospital, Luton, UK), Kevin Monahan, PhD (West Middlesex University Hospital, Middlesex, UK), Alex Moran, MD (Northern Devon Healthcare Trust, Barnstaple, UK), Mary-Anne Morris, MD (Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK), Marianne Mortimore, MBBS (Mater Research Institute, University of Queensland, South Brisbane, Australia), Craig Mowat, MD (Ninewells Hospital, NHS Tayside, Dundee, UK), Rafeeq Muhammed, MD (Birmingham Children's Hospital, Birmingham, UK), Charles D. R. Murray, PhD (Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK), Hanlie Olivier (IBD Pharmacogenetics Group, University of Exeter, Exeter, UK), Timothy R. Orchard, DM (Imperial College Healthcare NHS Trust, London, UK), Simon Panter, MD (South Tyneside District Hospital, South Tyneside, UK), Vinod Patel, MBBS (Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne, UK), Rosemary Phillips, MD (Princess Alexandra Hospital, Essex, UK), Neeraj Prasad, MSc (Wrightington Hospital, Wrightington, UK), Cathryn Preston, MBChB (Bradford Royal Infirmary, Bradford, UK), Graham Radford-Smith, PhD (Royal Brisbane and Women’s Hospital, Brisbane, Australia), Praveen Rajasekhar, MD (Northumbria NHS Trust, Tyne and Wear, UK), Dipak Roy, PhD (Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne, UK), Rebecca Saich, PhD (Basingstoke and North Hampshire Hospital, Basingstoke, UK), Jack Satsangi, PhD (Western General Hospital, NHS Lothian, Edinburgh, UK), Stefan Schreiber, PhD (Kiel University, Kiel, Germany), Sandip Sen, MD (Royal Stoke University Hospital, Stoke-on-Trent, UK), Neil Shah, MD (Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK), Richard Shenderay, MBBS (Airedale NHS Foundation Trust, Keighley, UK), Acuth Shenoy, MD (Colchester Hospital University NHS Foundation Trust, Colchester, UK), James Shutt, DM (Dorset County Hospital NHS Foundation Trust, Dorchester, UK), Mark Silverberg, PhD (Mount Sinai Hospital, Toronto, Ontario, Canada), Alison Simmons, PhD (Oxford University Hospitals, Oxford, UK), Jonathan Simmons, DM (Royal Berkshire Hospital, Royal Berkshire NHS Foundation Trust, Reading, UK), Salil Singh, PhD (Bolton NHS Foundation Trust, Bolton, UK), Malcolm Smith, MBChB (Aberdeen Royal Infirmary, Aberdeen, UK), Mark Smith, MD (Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, UK), Melissa Smith, MB (Royal Sussex County Hospital, Brighton, UK), Jonathon A. Snook, DPhil (Poole Hospital NHS Foundation Trust, Poole, UK), Sunil Sonwalker, MD (Calderdale Royal Hospital, Halifax, UK), Christine R. Stevens, PhD (Broad Institute, Harvard University, Cambridge, Massachusetts), Giacomo Sturniolo, PhD (Univerita di Padova, Padova, Italy), Sreedhar Subramanian, MD (Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK), Amanda Thomas, MBBS (Department of Gastroenterology, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK), Mark Tighe, BM (Poole Hospital NHS Foundation Trust, Poole, UK), Franco Torrente, MD (Department of Gastroenterology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK), Mark Tremelling, MD (Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK), Epameinondas Tsianos, PhD (University Hospital of Ioannina, Ioannina, Greece), Deven Vani, MD (Mid Yorkshire Hospitals NHS Trust, Wakefield, UK), Alissa Walsh, MBBS (St Vincent’s Hospital, Sydney, Australia), Gillian Watermeyer, MBChB (Groote Schuur Hospital, Cape Town, South Africa), David Watts, MBChB (Forth Valley Royal Hospital, Larbert, UK), Gill Watts, MD (Wythenshawe Hospital, South Manchester, UK), Sean Weaver, PhD (Royal Bournemouth General Hospital, Bournemouth, UK), Emma Wesley, MBBS (Musgrove Park Hospital, Taunton and Somerset NHS Hospitals, Taunton, UK), Anne Willmott, MBChB (Leicester Royal Infirmary-Paediatric, Leicester, UK), Karen Yearsley, BM (Nevill Hall Hospital, Abergavenny, UK), Veena Zambar, MBBS (Leeds General Infirmary, Leeds, UK), and Sebastian Zeissig, MD (University Medical Center Schleswig-Hostein, Kiel, Germany). These individuals identified and recruited patient s to the study and provided comments on a draft of the manuscript. Funding Information: Adverse Events Consortium funded the sample collection and genotyping at the Broad Institute. The UK National Institute for Health Research provided research nurse support to facilitate recruitment at all UK research sites. Crohn’s & Colitis UK and forCrohns provided funding support and publicized this study to their members. The Exeter National Institute for Health Research Clinical Research Facility provided DNA storage and management. Institutional strategic support award WT097835MF from Wellcome Trust supported the management of the study. Samples from Cedars-Sinai were collected and processed through the MIRIAD biobank that was funded by grant P01DK046763 from the National Institutes of Health. Publisher Copyright: © 2019 American Medical Association. All rights reserved.IMPORTANCE Use of thiopurines may be limited by myelosuppression. TPMT pharmacogenetic testing identifies only 25% of at-risk patients of European ancestry. Among patients of East Asian ancestry, NUDT15 variants are associated with thiopurine-induced myelosuppression (TIM). OBJECTIVE To identify genetic variants associated with TIM among patients of European ancestry with inflammatory bowel disease (IBD). DESIGN, SETTING, AND PARTICIPANTS Case-control study of 491 patients affected by TIM and 679 thiopurine-tolerant unaffected patients who were recruited from 89 international sites between March 2012 and November 2015. Genome-wide association studies (GWAS) and exome-wide association studies (EWAS) were conducted in patients of European ancestry. The replication cohort comprised 73 patients affected by TIM and 840 thiopurine-tolerant unaffected patients. EXPOSURES Genetic variants associated with TIM. MAIN OUTCOMES AND MEASURES Thiopurine-induced myelosuppression, defined as a decline in absolute white blood cell count to 2.5 x 10(9)/L or less or a decline in absolute neutrophil cell count to 1.0 x 10(9)/L or less leading to a dose reduction or drug withdrawal. RESULTS Among 1077 patients (398 affected and 679 unaffected; median age at IBD diagnosis, 31.0 years [interquartile range, 21.2 to 44.1 years]; 540 [50%] women; 602 [56%] diagnosed as having Crohn disease), 919 (311 affected and 608 unaffected) were included in the GWAS analysis and 961 (328 affected and 633 unaffected) in the EWAS analysis. The GWAS analysis confirmed association of TPMT (chromosome 6, rs11969064) with TIM (30.5% [95/311] affected vs 16.4% [100/608] unaffected patients; odds ratio [OR], 2.3 [95% CI, 1.7 to 3.1], P = 5.2 x 10(-9)). The EWAS analysis demonstrated an association with an in-frame deletion in NUDT15 (chromosome 13, rs746071566) and TIM (5.8% [19/328] affected vs 0.2% [1/633] unaffected patients; OR, 38.2 [95% CI, 5.1 to 286.1], P = 1.3 x 10(-8)), which was replicated in a different cohort (2.7% [2/73] affected vs 0.2% [2/840] unaffected patients; OR, 11.8 [95% CI, 1.6 to 85.0], P = .03). Carriage of any of 3 coding NUDT15 variants was associated with an increased risk (OR, 27.3 [95% CI, 9.3 to 116.7], P = 1.1 x 10(-7)) of TIM, independent of TPMT genotype and thiopurine dose. CONCLUSIONS AND RELEVANCE Among patients of European ancestry with IBD, variants in NUDT15 were associated with increased risk of TIM. These findings suggest that NUDT15 genotyping may be considered prior to initiation of thiopurine therapy; however, further study including additional validation in independent cohorts is required.Peer reviewe

    A Submillimetre Search for Cold Extended Debris Disks in the Beta Pictoris Moving Group

    Full text link
    The Beta Pictoris Moving Group is a nearby stellar association of young (12Myr) co-moving stars including the classical debris disk star beta Pictoris. Due to their proximity and youth they are excellent targets when searching for submillimetre emission from cold, extended, dust components produced by collisions in Kuiper-Belt-like disks. They also allow an age independent study of debris disk properties as a function of other stellar parameters. We observed 7 infrared-excess stars in the Beta Pictoris Moving Group with the LABOCA bolometer array, operating at a central wavelength of 870 micron at the 12-m submillimetre telescope APEX. The main emission at these wavelengths comes from large, cold dust grains, which constitute the main part of the total dust mass, and hence, for an optically thin case, make better estimates on the total dust mass than earlier infrared observations. Fitting the spectral energy distribution with combined optical and infrared photometry gives information on the temperature and radial extent of the disk. From our sample, beta Pic, HD181327, and HD172555 were detected with at least 3-sigma certainty, while all others are below 2-sigma and considered non-detections. The image of beta Pic shows an offset flux density peak located near the south-west extension of the disk, similar to the one previously found by SCUBA at the JCMT. We present SED fits for detected sources and give an upper limit on the dust mass for undetected ones. We find a mean fractional dust luminosity f_dust=11x10^{-4} at t=12Myr, which together with recent data at 100Myr suggests an f_dust propto t^{-alpha} decline of the emitting dust, with alpha > 0.8.Comment: 11 pages, 3 figures, 3 tables; accepted for publication in Astronomy & Astrophysic

    Semiquantitative Analysis of Clinical Heat Stress in Clostridium difficile Strain 630 Using a GeLC/MS Workflow with emPAI Quantitation.

    Get PDF
    <div><p><i>Clostridium difficile</i> is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 <i>C. difficile</i> proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.</p></div

    The effect of increasing the supply of skilled health providers on pregnancy and birth outcomes: evidence from the midwives service scheme in Nigeria

    Get PDF
    Background: Limited availability of skilled health providers in developing countries is thought to be an important barrier to achieving maternal and child health-related MDG goals. Little is known, however, about the extent to which scaling-up supply of health providers will lead to improved pregnancy and birth outcomes. We study the effects of the Midwives Service Scheme (MSS), a public sector program in Nigeria that increased the supply of skilled midwives in rural communities on pregnancy and birth outcomes. Methods: We surveyed 7,104 women with a birth within the preceding five years across 12 states in Nigeria and compared changes in birth outcomes in MSS communities to changes in non-MSS communities over the same period. Results: The main measured effect of the scheme was a 7.3-percentage point increase in antenatal care use in program clinics and a 5-percentage point increase in overall use of antenatal care, both within the first year of the program. We found no statistically significant effect of the scheme on skilled birth attendance or on maternal delivery complications. Conclusion: This study highlights the complexity of improving maternal and child health outcomes in developing countries, and shows that scaling up supply of midwives may not be sufficient on its own

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown.</p> <p>Methods</p> <p>We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects.</p> <p>Results</p> <p>In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, <it>cis </it>expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed <it>cis</it>-eQTLs. Celiac associated risk variants from two regions, containing genes <it>IL18RAP </it>and <it>CCR3</it>, showed significant <it>cis </it>genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected.</p> <p>Conclusion</p> <p>In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.</p

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The model bacterium <it>Clostridium cellulolyticum </it>efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H<sub>2 </sub>and CO<sub>2</sub>, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for <it>C. cellulolyticum</it>, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering.</p> <p>Results</p> <p>The first targeted gene inactivation system was developed for <it>C. cellulolyticum</it>, based on a mobile group II intron originating from the <it>Lactococcus lactis </it>L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous <smcaps>L</smcaps>-lactate dehydrogenase (<it>Ccel_2485; ldh</it>) and <smcaps>L</smcaps>-malate dehydrogenase (<it>Ccel_0137; mdh</it>) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway.</p> <p>Conclusions</p> <p>The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in <it>C. cellulolyticum</it>. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in <it>C</it>. <it>cellulolyticum </it>and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass.</p

    Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Get PDF
    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a ‘black swan’. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify ‘characteristic’ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon’s domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models
    corecore