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Extreme events and predictability of catastrophic failure in composite materials 

and in the Earth 

 

Ian Main and Mark Naylor  

University of Edinburgh 

 

Abstract 

Despite all attempts to isolate and predict extreme earthquakes, these nearly always 

occur without obvious warning in real time: fully deterministic earthquake prediction 

is very much a ‘black swan’.  On the other hand engineering-scale samples of rocks 

and other composite materials often show clear precursors to dynamic failure under 

controlled conditions in the laboratory, and successful evacuations have occurred 

before several volcanic eruptions.  This may be because extreme earthquakes are not 

statistically special, being an emergent property of the process of dynamic rupture.  

Nevertheless, probabilistic forecasting of event rate above a given size, based on the 

tendency of earthquakes to cluster in space and time, can have significant skill 

compared to say random failure, even in real-time mode.   We address several 

questions in this debate, using examples from the Earth (earthquakes, volcanoes) and 

the laboratory, including the following.  How can we identify ‘characteristic’ events, 

i.e. beyond the power law, in model selection (do dragon kings exist)? How do we 

discriminate quantitatively between stationary and non-stationary hazard models (is a 

dragon likely to come soon)?  Does the system size (the size of the dragon’s domain) 

matter?  Are there localising signals of imminent catastrophic failure we may not be 

able to access (is the dragon effectively invisible on approach)?   We focus on the 

effect of sampling effects and statistical uncertainty in the identification of extreme 

events and their predictability, and highlight the strong influence of scaling in space 

and time as an outstanding issue to be addressed by quantitative studies, 

experimentation and models. 

 

Introduction 

 

Catastrophic rupture of a variety of composite natural or man-made ceramic materials 

under slow loading conditions is usually preceded by chemically-activated, 

physically-enhanced microscopic processes that both weaken the material around its 
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initial flaws and result in greater stress concentration there (Lawn, 1993).  This leads 

to a strong positive feedback effect in promoting accelerating crack growth, for 

example as in the process of sub-critical crack growth by stress corrosion cracking 

(e.g. Atkinson, 1987).  For a single crack in an otherwise uniform medium (a single 

crystal) reaction rate theory on a crystal lattice containing a single initial flaw predicts 

an exponential relationship between crack growth velocity V and the stress intensity 

factor K=Yσ√x (a measure of stress concentration at the crack tip that depends on the 

geometric loading factor Y, the stress σ and the crack length x), of the form 

V~exp(K/K0) (Lawn, 1993), where K0 is a characteristic stress intensity factor.   

In composite or polycrystalline materials the behaviour is instead a power-law 

known as Charles’ law: V~Kn, most likely due to the additional stochastic component 

from the spatial distribution of the local stress and strength field in a non-uniform 

medium. The power-law exponent n is known as the stress corrosion index. Under 

constant stress loading, above the threshold stress for subcritical crack growth, 

Charles’ law predicts an accelerating crack growth of the singular form 

 ν−−= )/1(0 fttxx        [1] 

where x0 is the initial crack length, tf is the failure time and the exponent ν=2/(n-2).  

In practice catastrophic failure occurs before tf, i.e. while the rupture velocity is finite 

near the inertial limit.  The same equation can be derived assuming a random strength 

distribution in the site percolation model near the percolation threshold or critical 

point, and by empirically-based constitutive laws based on observation of power-law 

creep experiments in the laboratory (Main, 1999).   More complex models (e.g. with 

log-periodic oscillation superposed, e.g. Sornette & Sammis, 1995) have been 

proposed for this acceleration, but laboratory rock deformation tests rarely show such 

behaviour in variables such as acoustic emission event rate, instead having a 

monotonic increase (e.g. Sammonds et al., 1992, Fig 2a) except where pore pressure 

fluctuations can lead to a single temporary hiatus in acceleration and associated 

precursors to failure (e.g. Sammonds et al., 1992, Fig 2b). 

 Catastrophic failure in the laboratory is often associated with prior localisation 

of acoustic emission hypocentres along the eventual rupture plane.  In a recent set of 

experiments with acoustic monitoring to determine the full seismic moment tensor of 

local strain, Graham et al. (2010) showed localisation of failure in a compression test 

was also associated with the transition from predominantly tensile to predominantly 
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shear-type moment tensors, marking a transition from dilatant (positive volumetric 

strain) to double-couple (little or no volumetric strain) focal mechanisms. Tensile 

crack growth is associated with bulk sample dilatancy, once though to be the key to 

earthquake prediction (Scholz et al., 1973).   Dilatant microcracking in a 

compressional stress field results in a negative feedback inhibiting further crack 

growth, representing a temporary strain hardening process.  In this case the stress 

intensity is negatively correlated to crack length and hence 

 
mTtxx )(0 +=  : 0<m<1  ,   [2] 

 

where T is a characteristic transient time (Main, 2000).  This is eventually overtaken 

by an unstable positive feedback due to localising shear deformation of the form [1].  

Main (2000) also showed that the transition such negative to positive feedback in 

crack growth dynamics subject to constant loading (creep) resulted in an emergent 

constant strain rate due to the superposition of these two processes.  The constant-

strain rate phase has a power-law rheology between stress and strain rate, as observed 

for many composite materials even in the microscopically brittle field [Ngwenya et 

al., 2001; Heap et al., 2009].  This discussion illustrates a degree of universality in the 

constitutive equations between the phenomenology of failure in a variety of natural 

and man-made composite materials, some aspects of natural geophysical systems, and 

potential physical explanations in the transition from sub-critical to critical crack 

growth.  

 A key aspect of near-critical point dynamics such as equation [1] is the 

emergence of power law frequency-size distributions, for example the incremental 

frequency of rupture or crack length x   

 F(x)~xd .       [3] 

The exponent d can be measured after a laboratory test by measuring the crack length 

distribution in section, or by inference from inversion of the radiated acoustic waves 

in three dimensions [Hatton et al., 1993].   Equation [3] is consistent with the 

Gutenberg-Richter law for earthquake recurrence F(m)=abm, where F here is an 

incremental frequency, the magnitude m is the logarithm of the maximum radiated 

amplitude, corrected for attenuation, and a and b are model parameters.  The exponent 

b depends both on the level of stress (Scholz, 1968), which affects the stress intensity, 



 4 

and on the material heterogeneity (Mogi, 1962), which affects the fracture toughness 

or critical stress intensity Kc.  In the laboratory the parameter b is negatively 

correlated to the normalised stress intensity K/Kc (Meredith & Atkinson, 1983) 

thereby providing a quantitative unification of the effect of applied stress and material 

heterogeneity on the exponent b.  

A major difference between the laboratory and natural processes is the order 

of magnitude differences in scale in space and time, allowing the possibility of a 

range of physical and chemical processes not observable on a laboratory time scale 

(e.g. fault and fracture healing, stress interaction between faults, strong and systematic 

material heterogeneity due to previous geological history on all scales).  In additions 

the boundary conditions are very different, especially the absence of a large stiffness 

contrast between the rock sample and the loading medium in a lab test: in the Earth 

rock is loaded by more rock, not steel or hydraulic fluid.  In the lab the ultimate 

maximum magnitude of a rupture event is pre-determined by the sample size.  In the 

laboratory scaling exponents, such as the b-value, vary systematically between rock 

type and with stress as described above, whereas in natural seismicity the b-value is 

remarkably constant in space and time, within its uncertainty, at a value near 1 for 

shallow earthquakes [Frohlich & Davis, 1993; Kagan, 1999]. 

The Earth is permeated by pre-existing faults and fractures on all scales, and 

the presence of fault healing and reloading allows deformation at a remarkably steady 

rate, with a long-term balance in the energy flux, in a state permanently near the 

critical point.  After an appropriate ‘run-in’ period, this near-critical, steady-state 

dynamics occurs spontaneously, without the need for external ‘tuning’ within the 

spectrum of possibilities that can be more fully explored in the transition from sub-

critical to critical crack growth in the laboratory.  This state of ‘self-organised 

criticality’, proposed by Bak & Tang [1988] for avalanches in sandpiles loaded at a 

constant mass flux rate, and soon after by Bak et al [1989] and Sornette & Sornette 

[1989] for earthquakes, neatly explains the presence of power law statistics such as 

equations [1] and [3], the observed low stress drop in natural seismicity compared to 

the ambient state, and the ease with which earthquakes can be triggered by man-made 

stress perturbations [Main, 1996].   The cellular automaton type models used to model 

the process initially used only local interactions, analogous to the Ising model for 

magnetism.   In the Earth however long-range stress interactions are also important. In 

this case power-law statistics emerge not just in the avalanches (or earthquakes), but 
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in the permanent structures left behind, i.e. the faults [Cowie et al, 1993; Sornette et 

al., 1994].   

Here we address the problem of prediction of individual extreme events 

associated with localised, catastrophic rupture in composite materials and in the Earth, 

using a number of examples primarily from our recent published work, and some new 

analysis represented in Figures 1-3, to illustrate particular concepts or questions. 

 

Do Dragon Kings exist? 

 

Dynamic failure in a laboratory test fractures the whole sample, such that the final 

crack or fault is much bigger than would be expected from extrapolation of the 

previous crack population using equation [3].  In this paper this is what we mean by 

an extreme event being a ‘Dragon King’: the largest rupture is not just bigger than 

anything seen before (an extreme event in this time interval) but is also a genuine 

outlier from what would be expected from extrapolation of the overall population of 

smaller fractures, with and an enhanced probability of occurrence of the largest events 

above the power-law trend.  One model with this property is the ‘characteristic 

earthquake’ model, with power-law scaling at small magnitudes and a dragon king 

(characteristic earthquake of a given repeatable size) that occurs more often than 

expected from extrapolation of this smaller population, often inferred from a big gap 

in the frequency-magnitude plot between the magnitude of the largest event and the 

next largest [Schwartz & Coppersmith, 1984].  A second aspect of this model is the 

notion of quasi-periodic recurrence, related to the concept of elastic rebound and 

stress renewal [Reid, 1910; Shimazaki & Nakata, 1980] as well as the related concept 

of a ‘seismic gap’ [McCann et al., 1979], i.e. a segment of a fault or plate boundary 

with previous history of a large earthquake but not in the recent past.  The temporal 

behaviour of renewal models and their applicability to Earthquakes is discussed in the 

next section.  Here we address the question of whether we can clearly identify 

‘characteristic’ events from frequency-magnitude data; given a finite, and perhaps not 

representative, data sample from the short timescales we have access to in 

instrumental, historical and palaeoseismic data.   

 One example of a gap between the largest and next largest event in a 

population is Bath’s law for aftershocks, where the largest aftershock is (on average) 

around 1.2 magnitude units less than that of the mainshock, irrespective of the 
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mainshock magnitude.  Aftershocks are conventionally modelled statistically with an 

Epidemic-Type Aftershock Sequence (ETAS, Ogata, 1988) model.  This model is 

‘seeded’ with random events and then adds triggered events whose event rate decays 

in time according to the first derivative of equation [2], a form known as the modified 

Omori law   Physically such empirically-observed power-law decay is therefore 

consistent with the time-dependent response of a complex medium to the stress 

transient caused by the parent or triggering event (Main 2000).  In the ETAS model 

both the temporally-random seeded events and their associated triggered events are 

assigned magnitudes at random from the Gutenberg-Richter law [equivalent to 

equation 3].  In this model triggered events can (occasionally) be bigger than the 

triggering event due to this, and so are not labelled as conventional ‘aftershocks’.  

Helmstetter & Sornette (2003) examined this problem, and showed under 

some conditions that Bath’s law is an emergent property of finite sampling of the 

ETAS model, i.e. the gap in magnitude in a single parent-daughter sequence is a 

statistical average that would be expected from a parent process with a pure power-

law frequency-size distribution of the form [3].  In this example visually quite 

convincing magnitude gaps are very much consistent with a pure power law parent 

distribution.  As a consequence great care must be taken in assigning significance to 

potentially illusory ‘dragon kings’ identified by a magnitude gap or by comparing the 

observed frequencies with the trend extrapolated from the distribution at smaller 

magnitude . Sample bias is not confined solely to the largest events in power law 

systems.  On timescales longer than a single aftershock sequence simple metrics such 

as the mean event rate (of all sizes) show very slow, non-Gaussian convergence to the 

mean rate.  For example Main et al. (2008) demonstrated that the mean event rate per 

month in real data from the Centroid Moment Tensor catalogue tends to increase 

systematically as more data is collected.  The average event rate is now relatively 

stable at a global level, but the standard deviation is increasing, in contradiction to the 

central limit theorem.  This slow, non-Gaussian, convergence is also an emergent 

property of the ETAS model (Naylor et al. 2009a), and implies that even simple 

properties such as mean event rate or inter-event time cannot be determined without 

sampling bias even with relatively large (thousands) numbers of events in a catalogue.   

The identification of ‘characteristic earthquakes’ from frequency-magnitude 

data is also fraught with problems of counting errors arising from ‘statistics of small 

numbers’.  However, it is possible to account for this in model discrimination using a 
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Poisson distribution for the uncertainty in the number of events counted.  To identify 

a dragon king, we must first reject the null hypothesis that the candidate dragon is not 

part of the power-law population of smaller dragons that we have seen before, while 

accounting for the counting errors in both.  Leonard et al. (1999) introduced a method 

for doing this, applying a Bayesian Information Criterion for model selection using a 

generalised linear regression model that introduces an appropriate statistical penalty 

for models with greater numbers of free parameters, while simultaneously allowing 

for Poisson error statistics in the frequency at a given magnitude.  This assumption 

was tested a posteriori and the resulting 95% confidence limits were consistent at that 

level with the scatter in data.  In the limit of small bin widths in the regression, this 

combination is consistent with a similar combination of the alternate (Akaike) 

Information criterion and Poisson errors assumed in the method of inversion 

conventionally used for estimating the best fit (maximum likelihood) parameters in 

the ETAS model (Ogata, 1988). 

The identification of ‘dragon kings’ requires a simpler null hypothesis (i.e. the 

unbounded Gutenberg-Richter distribution) to be rejected, and to show that the largest 

event really is a statistical outlier at a given level of confidence (Kagan, 1993).  As we 

go to ever higher magnitudes, the probability of randomly sampling an event of that 

magnitude decreases, but is never zero - there is always a finite chance of sampling a 

large event from the unbounded parent distribution. To illustrate this Figure 1a plots 

the superposed frequency-magnitude distribution for 5000 random samples of 50,000 

events, each from a parent Gutenberg-Richter distribution with a b-value of 1. The 

spread of these Monte-Carlo outcomes visually illustrates the non-Gaussian nature of 

the statistics, especially at high magnitudes, in particular the ‘blowing up’ of the 

statistical scatter, and the discrete or ‘raster’ pattern due to sampling whole numbers 

of points on the histogram associated with the statistics of small numbers.  The red 

line on Fig 1a shows the known parent distribution and the blue lines the 95% 

confidence intervals assuming a Poisson distribution in the counting errors. The 

largest event in all of the random samples plots a clear 3 orders of magnitude above 

the parent trend, but is not a real outlier given the spread of outcomes, despite a 

relatively large but finite sample of total number of 50,000 events.  If we plot the 

Monte-Carlo simulation containing this extreme event (data points circled in red in 

Fig 1a) the magnitude of the extreme event is above the low-to medium magnitude 

trend by some three orders of magnitude.  Thus, when we analyse a real catalogue 
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containing a known potential outlier event, identified in retrospect, we cannot avoid 

introducing a similar magnitude of sample bias in any attempt to reject the null 

hypothesis of the Gutenberg-Richter distribution this event emerged from. 

The problem is exacerbated when we consider the impact of the event.  Fig 1b 

shows the frequency scaled by the seismic moment.  On a linear scale (Fig 1c) the 

extreme event dominates the total moment release.  The sample containing the 

extreme event appears very much like a ‘dragon king’ (Fig 1d), with over 4 orders of 

magnitude more total moment release in the random sample of 1000 events more than 

the mean, and around 2.5 orders of magnitude outside the 97.5% percentile.  In 

conclusion the strongly non-gaussian statistics of sampling a pure power can produce 

very realistic-looking ‘dragon kings’ in terms of impact.  

To examine this more closely we examine the probability distribution of the 

magnitude gap predicted by the characteristic earthquake hypothesis.  The distribution 

has the form of an exponential, with the incremental (Fig 2a) and cumulative (Fig 2b) 

distributions having the same form.  For the population as a whole a magnitude gap of 

greater than 1.7 would lie outside the 95% confidence limits for a power law parent 

distribution, and hence a characteristic distribution may be inferred as more likely (the 

magnitude gap is real) at that level of confidence.  This represents the statistical 

uncertainty.  Next we consider how sample bias may affect the search for 

characteristic earthquakes.  In looking for dragon kings it would be otherwise quite 

logical to begin the search with the largest events.  However, in Fig 2c the largest 

events have the biggest magnitude gap, so the statistics of the whole population are 

not representative for these events. The ‘search’ itself introduces a hidden bias, and 

any statistical test of the significance of a large magnitude gap must take this into 

account. 

The proportion of seismic moment that is released by the largest event in a 

given sample of 5000 events is shown in Fig 3.  The figure shows a bimodal 

distribution, with a broad peak skewed to the right at 40%, and a narrow one near 

100%.  The latter is due to the samples with apparent ‘dragon kings’, and the former 

to the tendency to a more pure power law appearance with the bulk of the samples.  

This random synthetic result for finite sampling of a pure power law can be compared 

to natural data.  For example, in a study of the Alpine-Mediterranean belt using some 

eighty years of instrumentally-recorded earthquakes, Jackson and McKenzie (1988) 

estimate the proportion of seismic moment released by the largest event in nine 
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different tectonic zones.  The average and standard deviation of these individual data 

points is 35% and 18% respectively, compared to 55% and 22% respectively for the 

synthetics of Fig 1.  Quite large significances can be assigned to such observations , 

whereas Fig. 3 shows that their observed variability in natural seismicity can be 

reproduced very well by sample bias effects. 

Naylor et al. (2009) examined the problem of finite sampling formally for 

earthquakes on the Sumatra-Andaman Islands mega-thrust and other subduction 

zones.  First they showed that Poisson confidence intervals do indeed correctly 

account for the counting errors in the histogram data.  Using these confidence 

intervals they then demonstrated that it is currently not possible to reject the null 

hypothesis of the Gutenberg-Richter law in favour of the characteristic earthquake 

model, even for a regional catalogue containing a moment magnitude 9.3 event (the 

2004 Boxing day earthquake resulting in the great Indian Ocean tsunami).  

Furthermore, if the parent distribution is an unbounded power law, the Poisson errors 

for the largest events remain constant as the sample size increases, while the event 

rates for the smaller events do converge.  Of course there must be some upper bound 

to earthquake magnitude to maintain a finite energy flux (Main, 1996).  In this case 

the statistics would eventually converge for the largest events, but this may require 

very long (thousands of years) timescales to acquire sufficient data to sample the rare 

mega-earthquakes sufficiently.  This does not mean dragon kings do not exist in 

earthquake frequency-magnitude data, just that we cannot yet tell, and simpler models 

with a single population following the power-law trend, for the time being, formally 

provide more Information (see also Kagan, 1993).  

We can also consider the time evolution of the magnitude catalogue rather 

than a snapshot. Starting from a small sample size, the confidence intervals at low 

counts trivially shift towards higher magnitudes as the catalogue grows. In a catalogue 

which grows following a Gutenberg-Richter distribution, we must expect periods 

when the frequency-magnitude plot looks characteristic and periods when it looks like 

it has rolled off at high magnitude purely as part of the inherent sampling variability.  

In contrast to Gaussian convergence, such sampling fluctuations are the norm when 

sampling from an unbounded power law. 

So far we have considered only the implications of statistical models of 

earthquake populations where earthquake magnitude is assigned randomly.   This is 

consistent with the notion of self-organised criticality, where event size is determined 
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by fine details of the processes governing the avalanche dynamics.  In this case there 

is nothing about the nucleation process (a single grain landing in the sandpile and 

starting grains around it rolling) that can be used to predict the eventual size of the 

event: the avalanche does not ‘know’ how big it is going to be at the start (Bak, 1996).  

However, in real earthquake data there is a small but statistically-significant 

correlation between the predominant frequency of the early part of a seismogram and 

the eventual size of an earthquake, albeit with a large scatter due to the variability of 

the source time function (Olsen & Allen, 2005; Abercrombie, 2005).  This scatter 

means in practice it is hard to predict the eventual size of a given event accurately 

from its nucleation phase.  In fact the 95% confidence limits on the best fit magnitude 

for a given predominant nucleation phase frequency is on the order of ±2 magnitude 

units (Olsen & Allen, 2005, fig 3), with significant implications for the accuracy of 

earthquake early warning systems based on the properties of the early part of the 

seismogram. This an individual nucleation event does to some extent ‘know’ how big 

an event it is going to start is, but only within 4 orders of magnitude in the predicted 

rupture area.   The large data scatter is consistent to first order with the notion of self-

organised criticality, but the finite positive (albeit weak or second order) correlation 

between nucleation and eventual rupture size is not.   

 Finally the existence of a characteristic earthquake event size may also be 

determined by long-term geological boundaries or segments on the fault that play the 

role of the finite sample size in a laboratory test.  This is analogous the behaviour of 

real sandpiles on real (finite-size) tables, where the frequency-size distribution is 

elevated above the power-law trend at the largest avalanche sizes, often associated 

with quasi-periodic recurrence of large avalanches (Held et al., 1990).   In fact one of 

the original proponents of the Characteristic earthquake model points out that the 

concept was developed exactly for finite fault segments, whereas much of the 

statistical analysis on earthquake catalogues is done on regions where a pure power-

law is much more likely to emerge (D. Schwartz, 2011, pers. comm.).  In some areas 

there is quite strong evidence for extremely similar slip repeating at a given site 

several times.  For example Klinger et al. (2011) used stream channel offsets at the 

source of 5 historically recorded strike-slip earthquakes on the Fuyun fault, Xinjiang, 

China to determine a rather constant slip in each of 6.3 ±1.2 m, consistent with the 

concept of a characteristic earthquake for that region.  Thus at least some fault or fault 
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segment boundaries may have the same effect as the finite table size in a sandpile 

experiment.  

The problem with an approach based on identifying fault segments with a hard 

horizontal constraint on earthquake size is the ‘black swan’: there is always a finite 

probability that a fault segment may be breached in a given earthquake to produce an 

even bigger event than that recorded to date.  For example during the 28 June 1992 

Landers, California earthquake the rupture propagated through a strong bend in the 

fault break mapped at the surface (Aydin & Du, 1995).  Similarly in the recent 

Tohoku, Japan earthquake previously identified ‘characteristic’ earthquake source 

zones all failed in a single event (Geller, 2011).  In accounting for both possibilities 

Parsons and Geist (2009) analyse instrumental and palaeoseismic data together for 

California, and find no strong preference for either the Gutenberg-Richter or the 

Characteristic earthquake model.  They suggest a ‘middle way’ in which both 

possibilities are allowed for.   

In the vertical direction the maximum dimension is more predictable in the 

sense that the largest events are confined predominantly to a seismogenic zone 

strongly associated with a thermal cut-off where the material behaves in a more 

ductile fashion. For example a clear characteristic peak was seen in the frequency 

magnitude statistics of the earthquakes preceding the eruption of Mount St Helens in 

1980 (Main, 1987), most likely due to the strong restriction on event size caused by 

an elevated geothermal above a magma chamber at a time of rapid inflation.  The 

effect of system size (the size of the dragon’s domain) on the dynamics is covered in 

more detail in a separate section below.   

 In summary the evidence for characteristic earthquakes is far from compelling, 

though their existence cannot be ruled out either.   As a consequence its utility as an 

operational tool has been called into question, particularly when undue faith is placed 

on the model in seismic hazard assessment, for example prior to the occurrence of the 

great Tohoku earthquake in Japan (Geller, 2011).   

 

Is a Dragon likely to come soon?  

 

There is (by definition) no predictability in the random or Poisson component of the 

ETAS model.  However, its parameters may be uncertain because of the slow non-

Gaussian convergence of event rate and Poisson counting errors discussed above, and 
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the total event rate is likely to be biased to low values.  If the background rate is 

sufficiently high to produce a large proportion of overlapping aftershock sequences, 

there is a significant bias in the best-fit ETAS solution, and known solutions cannot 

be determined by inversion without labelling (assigning marks to) ‘parent’ and 

‘daughter’ events (Touati et al., 2009, 2011).   These systematic and random 

uncertainties are important because the spatially-localised and random in time model 

is the basis for seismic hazard calculations, and also for the calculation of ‘probability 

gain’ over a random process that is a key metric of the skill of a given probabilistic 

forecasting strategy.  It is relatively easy to show that the ETAS model outperforms 

the purely Poisson process despite the additional model parameters, commonly 

achieving transient probability gains of two or three orders of magnitude over the 

background rate.  This can be used during aftershock sequences to estimate a 

conditional probability for future aftershocks at a given magnitude (Marzocchi and 

Lombardi, 2009).  The ETAS model therefore provides an important benchmark 

against which to test alternate forecasting strategies, i.e. an appropriate null 

hypothesis.  

Can we do better than forecasting aftershocks or more generally triggered 

events?  Sykes & Menke (2006) use a Bayesian technique to examine earthquake 

recurrence on major plate boundaries using the coefficient of variation as a metric for 

quasi-periodic behaviour based on the renewal model.  Using relatively small 

numbers of instrumentally and historically recorded events, they obtain repeat times 

with a variance less than mean, citing this as evidence for the seismic ‘gap’ 

hypothesis, itself based on the notion of fault segments at plate boundaries that fail in 

characteristic earthquakes in a quasi-periodic way.  This retrospective analysis is not 

borne out however by retrospective tests of prospective forecasts made using seismic 

gap hypothesis (Rong et al. 2003).  Using a much longer-term data set Scharer et al 

[2010] examined a 3000-year combined palaeoseismic record of 29 ground-breaking 

ruptures from the Southern San Andreas Fault in California at Wrightwood, and used 

statistical (Kolmogorov-Smirnov) tests to show that the temporally-random Poisson 

model could be rejected in favour of a weakly quasi-periodic recurrence model, with 

the caveat that the slow sedimentary deposition rate restricts the minimum frequency 

‘bin’ size to 10 years (Scharer, pers. comm.).  Despite its intuitive appeal, the 

probability gain in terms of predicted ground motion from quasi-periodic models in 

California using the historical and palaeoseismic record is rather local and relatively 
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modest (±30% or so) over a Poisson process (Petersen et al., 2007).  This degradation 

of periodicity, which might be associated with notions of an isolated fault with 

constant material properties (breaking and sliding stresses), implies that such material 

properties may not be reproducible between events, and/or that stress interactions 

(short and long-range) between the population of faults add a further degree of 

stochastic complexity that almost eradicates any periodic component.   If dragon 

Kings do exist in the frequency-size distribution, they don’t appear very regularly in 

the best record we have for earthquake repeat times, i.e. on the San Andreas fault 

(Scharer, 2010). 

 Few, if any, scientists believe the accurate, deterministic prediction of 

individual earthquakes is a reasonable scientific goal for the foreseeable future 

http://www.nature.com/nature/debates/earthquake/equake_frameset.html.  Largely 

this is a consequence of the reality check provided by the absence of clear and reliable 

precursors when subjected to a set of reasonable ‘rules of the game’ (Wyss, 1991; 

Hough, 2009), strong negative evidence (hypothesis falsification) from highly-

instrumented sites such as the Parkfield earthquake experiment (Bakun et al., 2005; 

Jackson & Kagan, 2006), and by the general acceptance of the complexity and non-

linearity of the process, and its degrading effect on deterministic prediction (Main, 

1992; Geller et al., 1997).  However, even in a chaotic state there is still some 

probabilistic short-term predictability.  Self-organised criticality has itself been 

defined sufficiently loosely to allow some systematic variability in stress state due to 

a low but finite stress drop, providing then potential of a degree of predictability in a 

probabilistic sense, possibly associated with systematic precursors associated with 

much smaller stress fluctuations (relative to the breaking stress) than seen in a typical 

laboratory test (Main & Naylor, 2006, 2010).  The main reason such hypotheses of 

‘intermittent’ criticality remain unproven is the lack of evidence for precursory 

signals that may be associated with such stress fluctuations, in particular the poor 

quality of the statistical evidence for quantitative evidence of critically-accelerating 

strain of the form of equation (1) (Hardebeck et al., 2008; Greenhough et al., 2009).  

The jury remains out on the possibility of probabilistic earthquake forecasting based 

on precursors, but for now the current frontier in the global Collaboratory for the 

Study of Earthquake Predictability (CSEP) Experiment is in determining the best 

model for earthquake triggering, perhaps combined with a small degree of periodicity 

http://www.nature.com/nature/debates/earthquake/equake_frameset.html
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in the stress renewal model (http://www.cseptesting.org/results).  Once this is 

established, it will then be possible to use that as a null hypothesis for predictability 

above that level.  

In contrast volcanic eruptions have often provided much more systematic 

warning prior to eruption.  The 1980 explosive eruption of Mount St Helens, 

Washington, occurred while the National park was closed due to a series of phreatic 

(steam) eruptions, concentrated seismicity where none had been seen before, and 

where the flank of the mountain was inflating by up to 1 m per day in the run-up to 

the event (Lipman et al., 1981).  The location was known, but the magnitude, eruption 

directionality and the precise time could not have been predicted accurately in 

advance, since the eruption was triggered by an unanticipated landslide event on the 

volcano flank that preceded a strong lateral blast.  More effusive basaltic eruptions are 

also often preceded by clear precursors associated with accelerating seismic event 

rate, with stacked data following equation [1] closely (Chastin & Main, 2003).   

However, similar sequences are also seen prior to intrusive events.  This is not 

surprising because we might expect the physics of fracturing and faulting ahead of an 

intruding magma body is similar for an event that breaches the percolation threshold 

than one which is just below (Gudmundsson et al., 2006).    The estimated ratio of 

erupted to intruded volumes of magma in the Etna Volcano in Italy in the period 

1980–1995 is 0.13, whereas the same ratio for the Krafla Volcano in Iceland in the 

period 1975–1984 is 0.30 (Gudmundsson et al., 2006). The ‘false alarm’ rate may 

therefore significant (70-87% for these volcanoes), but not so high as to preclude clear 

operational decisions to be made during a crisis, up to and including evacuation.  In 

contrast the vast majority of potentially precursory earthquake swarms in Italy, such 

as the one preceding the 2009 L’Aquila earthquake, do not end in a significant 

earthquake, and evacuation as a mitigation strategy cannot be justified by operational 

decision-making tools such as a formal cost-benefit analysis (van Stiphout et al., 

2010). 

Volcanic eruptions may be easier to predict (in a probabilistic sense) for a 

variety of reasons. The location is known, removing two degree of freedom from the 

problem. The source is shallower (a few km), and the deformation accelerated by 

magma injection, so that strain rates are higher, intermediate between laboratory 

strain rates and those of earthquake loading, and hence easier to detect.  Clear 

precursors have been seen, though the magnitude and time of the eruption can usually 

http://www.cseptesting.org/results
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only be predicted approximately, and the false alarm rate is high.  Nevertheless this is 

sufficient to be of some practical use.  The even higher false alarm ratio for 

earthquake forecasting based on earthquake clustering has significant implications for 

operational decision-making (van Stiphout, et al, 2010).  However even low (in an 

absolute sense) probability forecasts may have practical uses in issuing low level 

alerts or advisories summarised in  the findings and recommendations of the 

International Commission on earthquake forecasting for civil defence 

http://www.protezionecivile.it/cms/attach/ex_sum_finale_eng1.pdf and discussed 

more fully by Jordan and Jones (2010) and justified in more detail by Jordan et al. 

(2011). 

 

Does the size of the dragon’s domain matter, and is the dragon effectively 

invisible on approach? 

 

The scale-invariant nature of the geometry and some aspects of the physics of 

brittle field rupture has been used by many (largely implicitly) to argue for a linear 

scaling of physical processes between the laboratory and the field case.  However, the 

failure of the Earth is different in many respects to that of a laboratory test.  No 

significant bulk volumetric strain (dilatancy) is in fact observed prior to or during real 

earthquakes, as commonly observed in laboratory tests on brittle materials.  This may 

be because it is not possible yet to detect strain associated with the nucleation process 

of earthquakes, i.e. dilatancy is local, rather than distributed throughout the finite 

sized sample as in the laboratory.  The absence of significant co-seismic dilation 

argues for a much lower role of volumetric strain at tectonic scales than in the 

laboratory.  In other words the system size (the dragon’s domain) matters a great deal, 

and this is the determining factor on the practical visibility of the dragon on approach.  

In the two years before the MW 6.3 earthquake struck the city of L'Aquila, 

Italy on April 6, 2009, no anomalous strain signal larger than a few tens of nanostrain 

units was visible, limiting the volume of the possible earthquake ‘preparation zone’ to 

less than 100 km3 (Amoruso & Crescentini, 2010).  Even seconds before the 2009 

L’Aquila earthquake, “strain is stable at the 10−12 level and pre-rupture nucleation slip 

in the hypocentral region is constrained to have a moment less than 2 × 1012 Nm, i. e. 

0.00005% of the main shock seismic moment”.   The dragon may be coming 

imminently, but is effectively invisible on approach.  In contrast surface deformation 

http://www.protezionecivile.it/cms/attach/ex_sum_finale_eng1.pdf
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due to dilatant inflation of the carapace due to magma emplacement is clearly seen 

prior to some volcanic eruptions (e.g. Jordan & Keiffer, 1981) almost always 

associated with changes in seismicity (Qamar, et al., 1983; Main, 1987).  Such 

differences in scaling in space (size) and time (strain rate) have a big effect on the 

detectability and reliability of precursors, and this has not yet been fully addressed by 

multi-scale, multi-physics models, in such a way that preserves the observed 

structural scale-invariance. 

It is hard to imagine that the processes observed in laboratory tests do not 

apply at least at small scales in the Earth, e.g. in the fracturing of healed asperities or 

contact points on the fault.  However, these may be very local, as highlighted by the 

discussion above on the strain observations prior to the 2009 L’Aquila earthquake.  

The upper limit of 2×1012 Nm on the length scale of any precursory slip patch inferred 

by Amoruso and Crescentini (2010) implies an object no bigger than 100m, operating 

at a nucleation depth of typically 10 km or so in a continental setting, with the 

nucleation point possibly changing from even to event (as it has done for example in 

the last two Parkfield earthquakes, Bakun et al., 2005).  This geodetic constraint is 

supported by recent seismic evidence (Bouchon et al., 2011) of an accelerating signal 

concentrated on a very localised zone, identified by cross-correlation techniques prior 

to the 1999 Mw 7.6 Izmit (Turkey) earthquake.   The signal consisted of a succession 

of repetitive seismic bursts, accelerating with time in the 2 minutes preceding the 

event, and increased low-frequency seismic noise in the 44 minutes preceding the 

event.  Any one of these foreshocks is located within 20 m or less from the majority 

of the other events, comparable to the size of the largest event (25m).   These results 

confirm a very short duration, very localised, detectable nucleation phase for this 

event, much smaller than the eventual rupture size.  This is a singular observation at 

present: it is not yet known how common such events are, or how often they occur 

without triggering a larger event. 

In summary physical models require a nucleation process, but nucleation may 

be very local, and the process highly complex and highly non-linear, involving the 

interactions of several elements.  The eventual size of the rupture is only very weakly 

dependent on the nucleation process, and highly uncertain.  This is quite different 

from a laboratory test where a clear ‘preparation zone’ (equivalent to the eventual 

rupture size) is determined a priori by the sample boundaries.  Identifying such a 



 17 

small nucleation patch reliably in advance prior to natural earthquakes might be like 

looking for a ‘needle in a haystack’.   In summary reliable earthquake precursors 

remain a ‘black swan’ – not yet seen clearly but not possible to rule out, at least at 

some scale.  The question is not the theoretical possibility, but the practical issue of 

reliable identification, although recent constraints on the size of the nucleation patch 

go a long way in explaining why reliable precursors have not been observed.   So far 

the goal of identifying dragon kings in earthquake populations, and seeing them 

coming in advance, with sufficient reliability for a strong operational response, has 

proven elusive.  For now the model to beat (where significant probability gains over a 

random process can be demonstrated in real time) remains the earthquake triggering 

model. 

 

Conclusion 

 

There is no compelling evidence for dragon kings in the sense of outliers from the 

power-law size distribution of earthquake event size.  In contrast, some volcanic 

sequences show clear characteristic behaviour, and nearly all laboratory tests show an 

extreme event at the sample size, well outside the population of acoustic emissions 

that largely indicate grain scale processes until very late in the cycle.  Clearly 

differences in scale in space and time, and sample boundary conditions, play a strong 

role.  Identifying real outliers from power law distributions is inherently difficult: the 

largest event in an unbounded system is always equally uncertain, and the statistics 

for smaller events is to first order Poisson, converging only slowly to the Gaussian 

central limit as more data are collected.  As a consequence finite-size sampling bias 

can lead to significantly appealing ‘characteristic’-type plots, even for relatively large 

sample sizes taken at random from a pure power law.  In terms of the prediction of 

failure time, it is a mistake to use scale-free geometry as an argument for scale-free 

physics.  While physical models argue for a degree of probabilistic predictability 

associated with identifying the dragon’s approach, recent work on direct strain and 

cross-correlation seismic analysis has shown that any nucleation signal may be highly 

localised in comparison with the size of the ensuing event.  The dragon king is usually 

highly visible on approach in the laboratory, and before some volcanic eruptions, but 

for now our best forecasting model for earthquake populations is stochastic: based on 

fault interaction and triggering phenomena rather than any true precursory processes. 
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Figures 
 

 
 

Figure 1: (a) Simulated incremental frequency-magnitude data from 5000 random 
samples of 50,000 events, drawn from a parent Gutenberg-Richter distribution with a 
b-value of 1, and plotted on top of each other, with magnitude increments or bin 
widths of 0.2.  The red line indicates the known parent distribution and the blue lines 
the 95% confidence intervals calculated using Poisson count statistics. Data points 
circled in red represent the sample containing the largest event which is some 3 orders 
of magnitude greater than the next biggest event in this one sample.  (b) Frequencies 
weighted by seismic moment plotted as in (a).  The dashed line indicates the cut-off 
for whole numbers of events (n=1).  (c) As in (b) but with a linear scale on the y-axis. 
(d)  Histogram of the total moment released in each of the 5000 random samples. The 
red line is the mean, the orange line is the median, and blue lines are the 2.5 and 97.5 
percentiles.  
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Figure 2:  (a) Frequency of the magnitude difference between the largest and the 
second largest event from a simulation of a pure power-law distribution of seismic 
moment, obtained by the same simulations used to plot Fig 1. (b) Cumulative 
frequency expressed as a probability. (c) Scaling of the magnitude difference with 
respect to the maximum magnitude of the sample catalogue. 
 
 

 
 

Figure 3: Histogram of the proportion of seismic moment released in the single 
largest event for all of the individual simulations shown in Fig 1, also indicating the 
mean (red line), median (green line) and one standard deviation range (red dashed 
lines). 


	Frontsheet-extreemeeevents.pdf
	Extreme events and predictability of catastrophic failure in composite materials and in the Earth


