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Abstract

Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet
its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein
abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress.
Reproducibility between both biological and technical replicates was good, and a 37uC proteome of 224 proteins was
complemented by a 41uC proteome of 202 proteins at a 1% false discovery rate. Overall, 236 C. difficile proteins were
identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%)
were modulated by 1.5-fold or more at 41uC compared to 37uC and we noted changes in the majority of proteins associated
with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility
was reduced at 41uC as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in
proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in
proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by
almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins
will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing
translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress
model for the key cellular processes of protein folding and export.
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Introduction

Clostridium difficile, a Gram positive spore forming anaerobic

bacterium, infects the human colonic epithelia causing diarrhoeal

infections with symptoms including mild, self limiting diarrhoea

with associated abdominal pain, cramping, and low grade fever

(up to 40.6uC). Untreated, however, C. difficile infection (CDI) can

lead to potentially life-threatening fulminant pseudomembranous

colitis [1]. The factors underlying CDI – including extended

hospitalisation and the widespread administration of broad

spectrum antibiotics – and the organism’s pathogenesis are well

understood [2,3] and C. difficile is said to be most frequent cause of

infectious bacterial diarrhoea in hospitals worldwide [4]. In

addition to gastrointestinal disease, complications including build

up of fluid in the peritoneal cavity and between the pleural layers

of the lungs (ascites & pleural effusion, respectively), hepatic

abscesses and renal failures have been reported [5] and worldwide,

the cost of CDI is increasing annually [6,7].

The pathophysiological effect on host tissues of the primary

virulence factors, the large clostridial glucosylating toxins, A and

B, is well established [8,9,10] and the epidemiology of the disease –

including the increased morbidity, cost and mortality associated

with hypervirulent ribotype 027 and ribotype 078 strains – has

been the subject of careful study for over 20 years [11,12,13,14].

However, C. difficile virulence is a multifactorial phenomeon and is

still poorly understood [15,16]. For example, the ‘hypervirulence’

of ribotype 027 strains has previously been attributed in part to

increased sporulation, yet recent work has shown that ribotype 027

strains do not, in fact, sporulate more readily or at higher rates

than other, non ribotype 027 strains [17].

Thus it is timely for researchers to adopt global systems biology-

driven approaches to understanding this pathogen. Public

availability of well over 30 C. difficile genome sequences

[4,18,19,20] has afforded researchers the opportunity to better

understand the evolution and lineages of these organisms, yet

generation of post-genomic comparative datasets has lagged

somewhat. While the ClosTron gene disruption system [21] has

allowed precise analysis of the functions of a considerable number

of individual genes/proteins involved in, for example, sporulation
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[22], motility [23,24] secretion [25], regulation of virulence factor

expression [26] and the release of toxins A and B [27],

comparatively little is known about the adaptive response of C.

difficile. Emerson et al. [28] began to address this by analysing the

transcriptional response of C. difficile strain 630 to seven different

antimicrobial and environmental stresses and the work of Scaria et

al., [29] built on both cell culture and in vivo porcine CDI models

has expanded upon this. The recent work of Janoir et al.

furthermore described for the first time the adaptive transcrip-

tomic changes throughout the colonisation phase of infection in a

mouse model of CDI [30]. While we have a relative abundance of

transcriptome data for C. difficile, it is well established, however,

that the correlation between transcripts and actual functional

protein levels is not always good, with factors including

transcription efficiency [31], protein stability/stabilisation, or the

presence of small regulatory RNAs [32], amongst others,

contributing to discrepancies between measurements.

Shotgun Proteomics analyses, using nanoflow liquid chroma-

tography coupled with tandem mass spectrometry (MS/MS)

instrumentation offer life scientists a powerful direct assessment of,

and insight into, the functional components of cellular machinery

[33,34,35]. Due perhaps to the complexity and cost of the

instrumentation and the operator skill required for robust

proteomics analyses, however, only four shotgun proteomics

datasets exist for C. difficile [36,37,38,39]. Whilst these provide

useful global snapshots of metabolic function, measurement of the

adaptive response of the C. difficile proteome is much less

advanced. Two recent reports describing iTRAQ-driven analysis

of the organism’s response to clinically relevant stress [40,41] exist,

both complemented by analysis of the transcriptional programme

under the same conditions [29,42]. However, proteomes gener-

ated by isobaric labelling necessarily comprise only those proteins

found in both experimental conditions, and yield few insights into

those unique to each experimental condition [43]. Semiquantita-

tive approaches such as calculation of the exponentially modified

protein abundance index (emPAI) [44] and other means of protein

quantitation, including spectral counting [45], are widely used in

comparative proteomics [46,47], and our group has previously

used emPAI to allow analysis of functional and adaptive proteomic

profiles in two distinct phases of bacterial growth in the

nosocomial pathogen Ochrobactrum anthropi [48]. We now present

a semi-quantitative analysis of clinically relevant heat stress in C.

difficile strain 630 in which we both quantitate proteomic changes

and investigate proteins unique to the 37uC and 41uC proteomes.

Materials and Methods

Reagents
All chemicals and reagents, of the highest purity available, were

purchased from Sigma-Aldrich (Poole, UK), unless otherwise

stated. All 1D-PAGE reagents were purchased from Invitrogen

(Renfrewshire, UK); Lysing Matrix E tubes were from MP

Biomedicals (Cambridge, UK); MS-grade water and acetonitrile

(ACN) were purchased from Romil (Cambridge, UK) and trypsin

was from Promega (Madison, WI, USA).

Cell culture and growth conditions
Clostridium difficile strain 630 was a kind gift from Dr Peter

Mullany of the Eastman Dental Institute, London and was

routinely maintained on BHI agar (Oxoid) at 37uC in a MACS

MG500 Anaerobic workstation fitted with an airlock (Don Whitley

Scientific, UK). The workstation was operated on a conventional

anaerobic gas mixture containing 80% N2, 10% H2 and 10% CO2

and resazurin (1 mg L21) was used in all growth media as a redox

indicator. Routine growth of the organism involved the inocula-

tion of autoclaved, pre-reduced BHI broth (100 ml) with a single

actively growing colony from BHI agar. Cultures were grown

overnight (,16 h), and used as inocula at 5% (v/v) for growth in

1 L cultures, which were monitored by the increase in culture

attenuance at 650 nm (D650) versus uninoculated BHI broth.

Biological duplicate cultures were set up, comprising 261 L

cultures grown at 37uC for the entirety of the experiment, and

261 L cultures grown at 37uC until the early exponential phase

(D650 = 0.3), following which heat stress was induced by transfer-

ring them to a pre-heated 41uC circulating water-bath: incubation

continued for a further 3 h to D650 = 1.1, at which point cells were

harvested from all four cultures. Temperature equilibration from

37uC to 41uC occurred in approximately 4 min, and maintenance

of anaerobiosis was confirmed by the observation that the

resazurin remained colourless at all times. Plating and subculture

experiments showed that the cells remained viable at 41uC.

Attenuance was measured in the 41uC culture bottles by briefly

transferring them back to the anaerobic cabinet for removal of an

aliquot, followed by a return to the 41uC water bath (total time for

sample retrieval, ,2 min).

Cell harvest and lysis
Cultures were harvested at late-log phase (D650 = 1.1) of

anaerobic growth by centrifugation in a sealed tube at 10,0006
g for 15 min at 4uC in the JA10 rotor of a Beckman J2-HS

centrifuge (Beckman Instruments, Fullerton, CA, USA). Spent

broth was discarded inside the anaerobic cabinet and the cells

resuspended and washed in ice-cold 10 mM phosphate-buffered

saline (pH 7.8) by centrifugation as before. PBS was decanted in

the cabinet and pellets resuspended (1 g of cells/2 ml of buffer) in

fresh PBS. For cell breakage, 1 mL aliquots of cell suspension were

transferred to a Lysing Matrix E tube and homogenized using the

FastPrep FP120 Instrument (BIO 101 Inc., CA, USA) for four 30 s

disruptions at a speed setting of 5.5. The cell homogenate was

chilled on ice for 2 min between disruptions. The homogenate was

centrifuged at 25,0006g for 30 min at 4uC in the F2402H rotor of

a Beckman Allegra 64R centrifuge to remove unbroken cells and

debris. The resultant supernatant was then centrifuged at

150,0006 g for 2 h at 4uC in the 70.1 Ti rotor of a Beckman

L8-M centrifuge in order to sediment the insoluble, membrane-

associated fraction [34,38]. Subsequently, the ultracentrifuged

supernatant containing the soluble, cytosolic sub-proteome was

decanted and stored frozen in multiple 1 ml aliquots at 270uC
until required. Total protein in the cell extracts was determined

using the method of Bradford [49].

One-dimensional polyacrylamide gel electrophoresis (1D-
PAGE)

The soluble protein fraction was made up in 16 Tris-Glycine

SDS sample loading buffer at a concentration of 5 mg/mL and

boiled in a water-bath for 5 min. Subsequently, 100 mg (20 mL)

was loaded onto a 1.5 mm thick NuPage 4–12% Bis-Tris gel.

SeeBlue Plus2 Pre-Stained Standard was used as a protein

molecular mass marker. Electrophoresis was carried out using

16MES-SDS running buffer in an XCell II Mini Gel System at

200 V, 120 mA, 25 W per gel for about 40 min. Proteins were

visualized using SimplyBlue SafeStain as per the manufacturer’s

instructions. The entire lane was excised from the gel using a

sterile scalpel and cut into eight fractions (1 mm3 cubes) based on

molecular mass as previously described [38].

C. difficile Heat Stress Proteome Using emPAI
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In-gel tryptic digestion
Excised gel pieces, in 0.5 mL siliconised tubes, were washed

overnight in 50% (v/v) methanol/5% (v/v) glacial acetic acid. The

gel pieces were then dehydrated by incubation for 10 min in 100%

ACN at room temperature, followed by drying under vacuum in a

SpeedVac. The fractions were then reduced using freshly prepared

10 mM dithiothreitol (DTT) solution for 30 min, followed by

alkylation using freshly prepared 100 mM iodoacetamide solution

for a further 30 min. The fractions were once again dehydrated

using 100% ACN for 10 min and subsequently rehydrated for

10 min in 100 mM ammonium bicarbonate (NH4HCO3). The gel

pieces were completely dried under vacuum and 0.2 mg of trypsin

(Promega, Madison, USA) dissolved in 20 mL of 50 mM

NH4HCO3 (pH 7.8) was added to each sample, which was then

incubated overnight at 37uC. Subsequently, the supernatant was

recovered into fresh siliconised tubes and a second peptide

extraction from the gel pieces was carried out using 5% (v/v)

formic acid and 50% (v/v) ACN for 10 min. Peptide-containing

liquid fractions were pooled together, dried under vacuum and

resuspended in 20 mL of 0.1% formic acid in 2% ACN prior to

storage at 270uC until required.

Liquid chromatography-mass spectrometry (LC-MS)
analysis

LC-MS was carried out as previously described [38,48]. Briefly,

MS was performed using a 3200 Q-TRAP Hybrid ESI

Quadrupole linear IT mass spectrometer, ESI-Q-q-Qlinear IT-

MS/MS (Applied Biosystems/MDS SCIEX, Toronto, Canada)

with a nanospray interface, coupled with an online Ultimate 3000

nanoflow LC system (Dionex/LC Packings, Amsterdam, The

Netherlands). A m-Precolumn Cartridge (300 mm65 mm, 5-mm

particle size) was placed prior to the C18 capillary column

(75 mm6150 mm, 3 mm particle size) to allow desalting and

filtering. Both columns contained the reversed phase material

PepMAP 100 (C18 silica-based) with a 100-Å pore size (Dionex/

LC Packings). The following elution buffers were used in the

gradient: Buffer A (0.1% formic acid in 2% ACN) and Buffer B

(0.1% formic acid in 80% ACN). The nanoLC gradient used was

60 min in length: 0–55% B in 45 min, 10 min at 90% B followed

by 5 min at 100% A. The flow rate of the gradient was 300 nL/

min and the detector mass range was set at 400–1400 m/z. MS

data acquisition was performed in positive ion mode. During MS

acquisition, peptides with 2+ and 3+ charge states were selected for

fragmentation.

Database searching, protein identification and PROVALT
analysis

Protein identification was carried out using an internal

MASCOT server (version 1.9; Matrix Science, London, UK)

searching against a combined C. difficile genomic DNA and

plasmid database [38] and containing 3573 sequences in total.

Peptide tolerance was set at 61.2 Da with MS/MS tolerance set at

60.6 Da and the search set to allow for 1 missed cleavage. To

expedite the curation of the identified protein list from MASCOT,

PROVALT analysis was carried out as previously described by

Graham et al. [48]. The MASCOT output files were re-analysed

against the extracted C. difficile database using PROVALT [45],

which takes multiple MASCOT results and identifies matching

peptides. Redundant peptides are removed and related peptides

grouped together, associated with their predicted matching

protein. PROVALT also uses peptide matches from a random

database (in this case the C. difficile database was randomised) to

calculate false-discovery rates (FDR) for protein identifications as

previously described by Weatherley et al. [45]. For identification

purposes, the minimum peptide length was set at 6 amino acids,

the minimum peptide MOWSE score was set at 25 and the

minimum high quality peptide MOWSE score was set at 40. The

FDR calculations employed by PROVALT provide a good

balance between the number of correct and incorrect protein

assignments. As in previous work [38,48], the FDR was set at 1%,

thus 99% of proteins identified should be correct. The proteins

identified by standalone PROVALT analysis were subsequently

quantified by calculation of the exponentially modified protein

abundance index (emPAI) and molar % values for identified

proteins [44].

Application of emPAI
Proteogest software (http://www.utoronto.ca/emililab/

proteogestnosummary.htm) was used to generate lists of in silico

digested peptides (Nobsbl) [50] to facilitate calculation of PAI and

emPAI values.

The Protein Abundance Index (PAI) [44] is defined as:

PAI = Nobsd/Nobsl, where Nobsd and Nobsbl are the number of MS-

observed peptides per protein and the number of theoretically

observable peptides per protein respectively. Based upon PAI,

emPAI is defined as: emPAI = (10PAI)-1. The protein content in

molar fraction percentage (M%) can then be calculated using the

following formula: Protein content (M%) = emPAI/S(emPAI),

where S(emPAI) is the summation of emPAI values for all the

identified proteins. Fold change ratios for identified proteins were

calculated by dividing the calculated molar percentage value for

an individual protein at 41uC with the cognate 37uC value.

Bioinformatics
PSORTb version 2.0.4 [51], http://www.psort.org/psortb/

index.html was used for the prediction of bacterial protein

subcellular localisation. SignalP version 3.0 [52], http://www.

cbs.dtu.dk/services/SignalP/ was used to predict the presence and

location of signal peptide cleavage sites in amino acid sequences

for classically secreted proteins. SecretomeP version 2.0 [53],

http://www.cbs.dtu.dk/services/SecretomeP/ was used for the

prediction of non-classical protein secretion (referring to protein

secretion that is not triggered by signal peptides).

Results and Discussion

Comprehensive analysis of the C. difficileproteome using
GeLC/MS: Calculation of protein abundances using
emPAI

The main aim of the current work was to conduct a

comparative proteomic analysis of C. difficile 630 grown under

two different physiological conditions (37uC and 41uC). We set out

to identify proteins whose abundance changed significantly under

this clinically relevant heat stress and to determine which, if any,

were apparently unique to each temperature. From a technical

standpoint, we wished in addition to establish some parameters

regarding overall reproducibility of our GeLC/MS method by

applying the emPAI workflow, which we have previously

successfully applied to the comprehensive analysis of the soluble

subproteome of Ochrobactrum anthropi at two distinct phases of

growth [48]. In the current work, we initially utilised the emPAI

protocol to estimate the abundance of the proteins identified in

technical replicates of our 37uC samples. PROVALT [45] output

data was exported to Excel spreadsheets and the emPAI value was

then calculated and used to estimate the protein content within the

sample mixture in molar fraction percentages [44,54].

C. difficile Heat Stress Proteome Using emPAI

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88960

http://www.utoronto.ca/emililab/proteogestnosummary.htm
http://www.utoronto.ca/emililab/proteogestnosummary.htm
http://www.psort.org/psortb/index.html
http://www.psort.org/psortb/index.html
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SecretomeP/


Reproducibility of GeLC/MS: analysis of technical and
biological variability

An overview of our experimental set up is depicted in Figure 1.

Four C. difficile strain 630 cultures (1 L) were set up and at

D650 nm = 0.3, two of these cultures were transferred to 41uC. At

D650 nm = 1.1, cells were harvested from both 37uC and 41uC
cultures and proteins extracted for GeLC/MS as per materials and

methods. Due to the chance nature of automated selection of

peptides for MS/MS analysis and the resultant requirement for

multiple injections of a single sample to maximise peptide

identification [33,34,35,38,48], we initially wished determine the

level of reproducibility between technical replicates for a single

sample. To do so, we firstly compared inter-lane variability, as

proteins identified, for the same protein sample. Thus, for one of

the 37uC cultures, the same sample of cell extract protein was

electrophoresed on two separate lanes of a gel. Each gel lane was

then subject to fractionation, tryptic digestion and LC/MS

analysis as per materials and methods and the peptide samples

derived from each individual digested gel fraction were injected

once (Figure 1). The proteins identified by single injection LC/MS

for lane1 were then compared with those identified in lane 2 (the

‘pseudoereplicate’). Thus, each lane was analysed over 8 injections

and generation of a final list for each complete lane using

Figure 1. GeLC/MS-PROVALT workflow used to generate the 376C and 416C proteomes in Clostridium difficile strain 630.
doi:10.1371/journal.pone.0088960.g001
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PROVALT [45] identified 177 proteins in lane 1, versus 202

proteins in the pseudoreplicate lane 2 (Figure 1 and Files S1, S2).

A total of 150 proteins were common to the datasets from both

lanes and upon calculation of molar % for all proteins identified in

each technical replicate, a Pearson correlation of 0.864 was

obtained, indicating very good reproducibility between the

technical replicates. To assess variation between biological

duplicates, we analysed the biological duplicate 37uC culture via

single gel lane GeLC-MS with multiple injections (n = 3) and

identified a total of 163 proteins (File S3). Pearson analysis

revealed a strong positive correlation between the biological

replicates of 0.7 (n = 129) and overall our GeLC-MS analysis

identified a proteome of 224 proteins for C. difficile grown at 37uC
(File S4). Within this 37uC proteome, analysis revealed that the

average MOWSE score was 284, with an average of 5 peptides per

protein and 22% sequence coverage (Table S1). The largest

protein identified was Toxin A (CD0663) at 308.25 kDa while the

smallest was a ‘‘hypothetical protein’’ encoded by the CD630

plasmid, CDP09 at 5.8 kDa. This is the first proteomic

identification of a protein from the C. difficile strain 630 plasmid,

and BLASTP analysis revealed it to contain a Ribbon-helix-helix

domain (pfam12651), which is likely to be DNA binding. The most

acidic protein was ferredoxin (CD3605A) with a pI of 4.26, while

the most basic was 50S ribosomal protein L20 (CD0687) at

pI = 11.4.

Having established that reproducibility between both technical

and biological replicates was good, we proceeded to identify the

proteome of C. difficile subjected to heat stress at 41uC (Figure 1)

via the same GeLC/MS workflow (duplicate cultures, single lane

geLC/MS, n = 3 injections/gel slice), yielding an overall proteome

of 203 proteins (File S5). Within the 41uC proteome, which

exhibited an average MOWSE score of 245, 4.5 peptides per

protein and 19% sequence coverage, the lowest mass protein

identified was ferredoxin (CD3605A) at 6.43 kDa, which was also

the most acidic protein identified. The largest protein was DNA

directed RNA polymerase beta chain at 139.3 kDa while the most

basic protein was again 50S ribosomal protein L20 (pI = 13.47)

(Table S2). In both 37uC and 41uC proteomes, SignalP analysis

[52] identified 10 proteins as having predicted signal peptides: the

majority of these were cell surface proteins (e.g. CD2193, cwp24;

CD2793, slpA) or substrate binding components of transporters

(e.g. CD0873, CD2672) and we noted that 8/10 of these proteins

were common to both 37 and 41uC proteomes. The total number

of proteins identified from biological duplicate cultures of C. difficile

strain 630 grown at either 37uC or 41uC is therefore commen-

surate with our previous work: GeLC-MS analysis of Geobacillus

thermoleovorans T80 identified 157 proteins [34], and a similar

analysis of Oceanobacillus iheyensis identified 153 proteins [55]. In

both these investigations, as here, we also identified a large

proportion of the total complement of ribosomal proteins, as well

as molecular chaperones, elongation factors, central metabolic

enzymes and other relatively abundant proteins. Reproducibility,

between technical replicates and between biological duplicates,

was good and thus we could proceed with confidence to analyse

the proteins identified only at either 37uC or 41uC and to examine

changes in protein abundance within the C. difficile strain 630

combined proteome.

Proteins identified only at either 37uC or 41uC
Due to the complex nature of the peptide mixtures being

analysed, the separation capabilities of LC/MS systems can be

exceeded, with only the most abundant peptides in a scan being

selected for MS/MS analysis – a limitation of data dependent

acquisition [48]. Thus, as in our previous work, all samples were

analysed three separate times [40] resulting in increased overall

peptide identifications. With a multiple injection workflow, the

resolution of the MS becomes the limiting factor in proteome

penetration. Thus, a protein that was identified as unique to the

37uC C. difficile proteome was present in 37uC samples at

abundance sufficiently high to allow its detection. However, we

cannot say with certainty that the same protein is definitely not

present in the 41uC samples: only that its abundance at 41uC may

be below the limit of detection for the workflow used. It may be

reasonable to hypothesise, however, that if a protein is detected at

37uC alone, its relative abundance is likely to be much lower at

41uC, and vice versa. With this in mind, we can begin to consider

the biology implied by the proteins identified as ‘unique’ to each

growth condition (Table S3) in the context of the entire identified

proteome. These ‘unique’ proteomes from 37uC or 41uC are

relatively small when considered by themselves: a total of 25

distinct proteins with an average MOWSE score of 63 and 9%

sequence coverage were identified only within the 41uC samples.

The most abundant protein in the 41uC proteome by molar %

was Ribosomal protein L31 (CD3486A), a component of the large

50S ribosomal subunit that contains four conserved cysteine

residues that allow it to rapidly form intracellular disulfide bonds in

vitro. Furthermore, the protein contains a CXXC motif, also

commonly found in thiol-disulfide redox proteins such as

thioredoxin. L31 is known to play a role in stress response in a

variety of microorganisms, as do thioredoxins [48,56]. It has been

proposed that ribosome stalling via oxidation of the CXXC motif

of ribosomal protein L31 occurs as a result of disulfide stress in S.

coelicolor [57] and this may also be possible in C. difficile. In the

combined proteome, we noted that Coenzyme A disulfide

reductase (CD1797, CoADR) was upregulated by 1.98-fold,

perhaps in order to counteract this putative oxidation of L31.

Ribosomal protein S6, which was upregulated 2.27 fold in the

current work, is proposed to play a unique role in sensing

temperature differences in order to control ribosome function

[56,58] and we suggest evidence elsewhere in this work for

ribosome stalling under heat stress.

Two cell surface proteins (cwp19, CD2767; cwp25, CD0844)

were also found only in the 41uC proteome. The cell wall proteins

of C. difficile all contain three copies of the pfam 04122 motif, a

complex motif annotated as ‘putative cell wall binding repeat 2’

and have recently had their nomenclature standardised in the

work of Fagan et al. [59]. The idea has been proposed that these

pfam motifs mediate binding of the cwp proteins to the underlying

cell wall [59,60] and also enhance adhesion to surfaces [61]. It is

therefore possible that increases in GroEL abundance, combined

with various cwp (for example, cwp19 was upregulated 1.56 fold in

our microarray experiment) might enhance C. difficile adherence to

surfaces under heat stress and adaptation. Interestingly however,

the two cell wall proteins identified in the combined proteome

were down regulated (cwp6, CD2784, and cwp24, CD2193).

Certain cwp contain, in addition to three pfam04122 repeats, a

second domain that specifies a known or putative function [59]. In

the case of cwp6 and cwp24, the additional domains are a

peptidoglycan amidohydrolase and a glucosaminidase, respective-

ly: these domains could potentially allow remodelling of the

peptidoglycan layer. This process could therefore be down

regulated under heat stress, a hypothesis reinforced, to some

extent, by the detection of cwp22 (CD2713) only at 37uC: the

additional YkuD domain of cwp22 is a predicted transpeptidase

that allows alternative peptidoglycan cross linking and impacts

upon sensitivity to b-lactam antibiotics. Analysis of the cell wall

proteins (2.4% of our total identified proteome), including slpA

(CD2793) which was unchanged in all our analyses, again suggests
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increased cell adhesion, combined with decreased rearrangement

of the cell wall constituents under heat stress. A number of proteins

associated with response to intracellular stress were also found only

in the 41uC proteome. CD3398, a putative DNA repair protein

(nucleotide pyrophosphatase) belonging to the NUDIX superfam-

ily, was also slightly upregulated by 1.34-fold in our microarray

dataset. Since Nudix hydrolases hydrolyze X-linked nucleoside

diphosphates and enable cellular housecleaning via this hydrolysis

of aberrant deoxynucleoside triphosphates, they function to reduce

incorporation of undesired bases into DNA. The substrates of

these proteins are diverse and include 8-oxo-dGTP, a classical

marker of DNA damage [62], although only a small number of

protein/substrate combinations have been characterised to date

[63,64].

CD0812 encodes a universal stress protein that promotes stress

endurance under prolonged stress conditions such as those

imposed by our experiment. Its precise function is unknown,

however under stress conditions such as heat shock, nutrient

starvation, the presence of oxidants, uncouplers, and DNA-

damaging agents that may arrest cell growth, USPs are

overproduced [65]. An additional stress responsive protein,

CD1800 (annotated as a ‘tellurium resistance protein’) was found

only in the 41uC proteome and is one of seven such proteins within

the C. difficile genome containing a terD-like domain. Tellurite

resistance proteins are found in many pathogenic bacteria, and

although their precise role is as yet uncertain [66], they are known

to respond to a variety of stresses. Within our microarray data, the

raw data 41uC/37uC ratios for most of these tellurium resistance

protein encoding genes suggested up-regulation, albeit with p

values .0.05. In addition, we identified phosphate butyryltrans-

ferase (CD0112) and butyrate kinase (CD0113) – proteins involved

in short chain fatty acid metabolism, which may be biologically

more important than carbohydrate metabolism at 41uC.

Within the 37uC proteome samples, a total of 46 proteins with

an average MOWSE score of 76 and 10% coverage were unique

to this temperature alone. Toxin A (CD0663) was detected only in

the 37uC proteome and thus its abundance can be hypothesised to

be lower in the 41uC proteome. This is corroborated by our other

datasets that show down regulation of tcdA under heat stress, using

both microarray (3.1 fold down) and q-RT-PCR techniques [42].

This is the first detection of peptides from any of the C. difficile

toxins at 1% FDR using our workflow. It may be that the levels of

toxin produced by C. difficile 630 under our growth conditions are

relatively low, or that, at time of cell harvest, the majority of toxin

protein molecules were present extracellularly. Nonetheless, it is

known that the virulence of C. difficile, and other pathogens, is set

at a certain, optimum, temperature and other researchers have

shown decreased abundance of tcdA at temperatures other than

37uC [67]. Our microarray data for tcdB indicated that the

transcript was unchanged as the p value was .0.05, however the

raw data 41uC/37uC expression ratio suggested down regulation

at the higher temperature [42].

Evidence that the phosphotransferase system (PTS) for sugar

uptake may be of less importance under heat stress was provided

Figure 2. Functional categorisation of identified proteins in the combined Clostridium difficile strain 630 GeLC/MS proteome.
doi:10.1371/journal.pone.0088960.g002
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by detection of CD3068 (Enz IIb component, manX) and

CD3277 (enz IIc component, manY), both of which are involved

in mannose transport, only at 37uC. In support of this, CD3068

was down regulated some 1.9-fold by microarray, as indeed was

CD3069, the IId component at 2.2-fold down [42]. In the

combined proteome, the EI component (CD2755), common to,

and essential for all phosphotransferase systems in the cell, was

down regulated by 3.9 fold, although transcripts were reduced by

only 1.46 fold [42].

A putative thiol peroxidase (bacterioferritin comigratory pro-

tein, CD1822) was detected only at 37uC and thus was potentially

less abundant in the 41uC proteome: its cognate transcript was

down regulated by 2.8-fold at 41uC [42]. These thioredoxin-

dependent thiol peroxidases (peroxiredoxins) are widely expressed

in pathogenic bacteria, where they protect against oxidative stress

that might be encountered during the infection process. The

transcription antitermination factor, nusB (CD1201) regulates

transcription of rRNA operons by modulating the efficiency of

transcriptional antitermination (i.e. the progression of transcrip-

tion) in complex with 30S S10 (CD0072, unchanged in this work).

While S10, identified as a central hub in the antitermination

process, cannot bind NusB and the 30S subunit at the same time it

nonetheless represents an example of the functional diversity of

ribosomal proteins, and indeed a number of ribosomal proteins

also function as transcription factors [68]. NusB detection only at

37uC could imply greater quantities of free S10 available for 30S

subunit binding at 41uC, perhaps concomitant with decreased

rRNA synthesis.

Quantitation of protein abundance changes in 37uC and
41uC proteomes using emPAI

Overall, a total of 178 proteins were available for comparison

and quantitation in both 37uC and 41uC samples (Table S4), a

slightly higher number than was available in our quantitative

analysis of the emerging nosocomial pathogen Ochrobactrum anthropi

(131 proteins) [35]. In Ochrobactrum, we noted significant changes in

abundance for only 19 proteins between early and late log phases

of growth, including a number of gene products under the control

of the oxyR regulon which is induced in response to oxidative stress

and whose protein products have been linked with pathogen

survival in response to host immunity. In the C. difficile strain 630

combined proteome, the most abundant protein as calculated by

molar fraction % at 37uC was phosphoglycerate mutase (CD3171)

while at 41uC, ferredoxin (CD3605A) and ruberythrin (CD1524)

were most abundant. The least abundant protein at 37uC was

DNA directed RNA polymerase beta’ subunit (CD0067), while at

41uC, cwp6 (CD2784) was least abundant. Within the combined

proteome, the largest category of identified proteins were those

involved in protein synthesis (ribosomal proteins) at ,20%,

followed by those involved in metabolism of amino acids and

related molecules (13.5%), those involved in specific pathways

(7.9%) and those of the main glycolytic pathway (6.7%). The

remaining proteins were distributed amongst the other functional

categories (Figure 2).

In addition to emPAI and molar fraction percentages, the fold

change in the expression level of proteins identified under both

growth conditions was also calculated [48] by dividing the molar

percentage value for an individual protein at 41uC with the

Figure 3. Differential expression profile of 65 proteins common to both the 376C and 416C Clostridium difficile strain 630 GeLC/MS
proteomes whose abundances changed by $1.5 fold (dotted lines).
doi:10.1371/journal.pone.0088960.g003
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cognate value at 37uC. The log2 value of the 41/37 ratio was

calculated and finally the absolute fold change calculated as 2log2

value [40]. We selected a cutoff for biological significance of 1.5

fold, in keeping with our previous C. difficile investigations [40,42].

Taking a $50% cut-off value for biological significance, 65

proteins were modulated, representing some 37% of the total

proteome: 26 proteins were significantly up-regulated, whereas 39

proteins were significantly down-regulated in response to the 41uC
heat-stress in the combined proteome (Figure 3). A number of the

50S ribosomal proteins were downregulated, as were a number of

transcription and elongation factors including trigger factor

(CD3306), elongation factor P (CD1246), and GreA (CD3553),

as well as flagellin (CD0239) and several cell surface proteins (e.g.

cwp24, CD2193; cwp6, CD2784). As expected, a number of

proteins associated with chaperone and housekeeping functions

were upregulated, including the chaperone clpB involved in

reactivating aggregated proteins and protease clpP1 (CD2020 &

CD3305, repectively), an electron transfer flavoprotein beta-

subunit (CD0400), GroES (CD0193), ferredoxin (CD0115) and a

number of aminoacid aminotransferases (Table S4). A number of

components of the 30S ribosome, including the temperature

sensor, S6 [56,58]] were upregulated, however whilst GroeS was

upregulated, its co-chaperone GroEL (CD0194) was unchanged,

as was the DnaK chaperone (CD2461).

Central Metabolism
Protein abundances in the main glycolytic pathway and those

involved in metabolism of lipids were largely unchanged, however

we noted that abundance of over half of the proteins involved in

amino acid metabolism and interconversion (14 of 24 proteins)

changed under heat stress. The increased abundance of dihy-

drodipicolinate synthase 2 (CD3223), involved in both lysine

biosynthesis and in production of dipicolinate in spores –

recognised as one of the organism’s main virulence factors –

suggests that cells under heat stress are more reliant upon

fermentation and metabolism of amino acids, possibly due to

lifting of carbon catabolite repression [69], although there is

limited evidence in our data for such an effect upon either

carbohydrate utilisation or amino acid fermentation pathways.

The catabolite control protein CcpA (CD1064) is a pleiotropic

regulator that via binding to well defined creCD sites upstream of

some 18% of C. difficile genes, enables both positive and negative

control of global transcription in response to carbohydrate

availability [69]. Our microarray data suggest down regulation

of CD1064 transcripts, implying that lifting of ccpA mediated

transcriptional control could be important for survival and

maintenance of metabolism under heat stress. CD3664, a putative

aminoacid aminotransferase with a creCD site upstream that is

predicted to be unregulated by ccpA, was upregulated by 2.14 fold

in the combined proteome, and by 1.45 fold by microarray [42],

suggesting increased reliance on amino acid metabolism. An M19

family Zn-metallo-dipeptidase (CD3570) was upregulated by 2.9

fold, and while this protein could be involved in amino acid

metabolism, its precise function is as yet unknown. Conserved

domain analysis suggests it could play a role in detoxification –

either of carbapenam or b-lactam antibiotics, or in metabolism of

glutathione or its firmicutes surrogate, bacillithiol [70]. The HadA

protein (CD0395), involved in leucine catabolism, with a creCD site

upstream and predicted to be negatively regulated by ccpA, was

also upregulated in the current work. Leucine is an essential amino

acid growth substrate of C. difficile: during fermentation, three

moles of leucine are fermented to a mixture of fatty acids – two

moles of leucine are reduced to isocaproate, whereas one mole is

oxidised to isovalerate and CO2 [71]. Previously, we identified

seven of the eight proteins necessary for the reductive branch of

the leucine fermentation pathway encoded by genes CD0394 –

CD0401 [38] with the sole exception of the ATP-dependent

activator protein, hadI. We subsequently identified hadI (CD0396)

in our iTRAQ investigation, where, like hadA (CD0395), hadB

(CD0397) and hadC (CD0298), its abundance did not change

under heat stress [40]. In the current work, however, isocaprenoyl-

CoA:2-hydroxyisocaproate CoA-transferase (CD0395, hadA), and

a subunit of the oxygen-sensitive 2-hydroxyisocaproyl-CoA

dehydratase (CD0398, hadC), were both upregulated under heat

stress, with the remaining proteins in this operon being just under

the 1.5 fold cutoff. The absence of hadI in the GeLC-MS

proteome is unsurprising: Kim et al. [72] demonstrated that only

sub stoichiometric amounts of this activator are required for full

activity of the dehydratase, thus it’s abundance is likely to be much

lower than the other enzymes encoded by this operon. Indeed, in

the last step of the reduction, the electron recycles on the

dehydratase for up to 10,000 turnovers until another hadI

catalysed activation is required [73], demonstrating the efficiency

of this evolutionarily ancient metabolic process. Our systems

biology data is therefore consistent with the in vitro biochemistry

and stoichiometry elucidated for this pathway – which we have

now identified in three independent proteomics investigations,

thereby emphasising its importance during heat stress in C. difficile.

Transcript data shows that during two quite different heat

treatments [28,42], no significant changes occurred in the

expression of genes within this operon. However, exposure of C.

difficile 630 to other stresses including pH, oxygen and antibiotics

led to upregulation of transcripts [28] suggesting that the reductive

leucine fermentation pathway may be regulated as part of a more

general stress response, or possibly in response to changes in global

ccpA-mediated transcriptional regulation. While a polycistronic

mRNA is proposed to be produced, ribosome binding sites exist

upstream of several of the genes, including hadI [72], which may

allow regulation of protein abundances via translational control.

This could in some part explain the similar levels of transcript

detected for all genes in the operon during heat stress [42], despite

variations in the abundance of the cognate proteins. The oxidative

branch of the leucine fermentation pathway, leading to isovalerate,

is mediated by a ferredoxin (CD0115) in tandem with a 2-keto-

isovalerate ferredoxin reductase encoded by CD0116-CD0118 (a,

b and c subunits, respectively) – only ferredoxin was upregulated

in the current investigation, although our iTRAQ data [40]

showed upregulation of the a subunit of the 2-keto-isovalerate

ferredoxin reductase (CD0116) by 1.6 fold and an upward

perturbation of CD0117 and CD0118 by 1.45 and 1.4-fold,

respectively.

A putative aminoacid aminotransferase encoded by CD2532 was

the most up regulated protein (4.7 fold) in the current work,

correlating well with the iTRAQ data in which it was the second

most upregulated protein, at 3.4-fold. Interestingly, the CD2532

transcript does not change significantly under heat stress as revealed

by both microarray and qRT-PCR analysis [42]. CD2531 and

CD2532 are predicted to generate a bicistronic messenger and

indeed the transcript for CD2531 was also unchanged [42]. The

protein encoded by CD2532 belongs to the class VI pyridoxal

phosphate-dependent alanine-glyoxylate aminotransferase (AGAT)

family, homodimeric proteins that catalyse the transamination of

glyoxylate to glycine [70]. The gene is well conserved across the

genus Clostridium and other gut microbes including Roseburia hominis,

R. intestinalis and Eubacterium and Fusobacterium spp. It has been

suggested that PLP-dependent enzymes (representing ,1.5% of

prokaryotic genes) might represent useful targets for therapeutic

agents [74] and indeed AGAT has been shown to be required for
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pathogenesis of Magnaporthe oryzae, the causative agent of rice blast

disease [75]. However, whilst the precise function of this protein is

not yet elucidated within C. difficile, we have clear evidence for post-

transcriptional regulation of its abundance by an as yet unknown

mechanism.

Cellular Information flow
Our previous data has indicated a robust system-wide response of

C. difficile to clinical heat stress. iTRAQ labelling proteomics analysis

[40] revealed no significant changes in the abundance of the 40

ribosomal proteins detected and our previous microarray analysis

[42] furthermore suggested that all but three (30S S11, 30S S8, and

30S S1) of the transcripts were unchanged. However the current

data indicates that the abundance of a number of the large subunit

ribosomal proteins (L2, L3, L4, L5, L10, L20) are decreased under

heat stress. The recent work of Hockett et al. [76] has shown that, in

the plant pathogen Pseudomonas syringae, many genes associated with

translation are downregulated at temperatures higher than those

where the organism’s pathogenicity is usually expressed. The

virulence of C. difficile is accepted to be ‘set’ at 37uC and it is to be

expected that many genes encoding traits important for host-

microbe interactions, including protein synthesis, will be thermo-

regulated. Indeed, we noted that the key virulence factor, TcdA

(CD0663), was unique to the 37uC proteome as was DNA binding

protein HU (CD3496), which is known to be expressed more highly

during rapid growth [77] (Table S3). The ribosome, of which there

may be up to 107 within a single cell, is emerging as a key player in

proteome quality control and homeostasis, a molecular machine

monitoring all aspects of protein synthesis during translation [78]. In

the current work we identified 35 ribosomal proteins, of which 11

were modulated under heat stress (Table S4). We previously

detected a similarly large number of these highly abundant

ribosomal proteins, some of which were modulated, within the

proteome of Ochrobactrum anthropi [48]. The emPAI protocol appears

to generate a more dynamic result than that observed using isobaric

labelling – for example, the ribosomal protein 50S L4 (rplD,

CD0074) was the most downregulated protein in this investigation

at 5.49 fold down.

Ribosomal protein L4 forms part of the constriction site

between the peptidyl transfer centre of the ribosome and the exit

tunnel at the other end of the large subunit. This constriction site

has been implicated in communication between the interior of the

ribosome and the outside: certain protein sequences cause

translation to stall in response to cellular signals including

tryptophan and secA. In addition, the shape of the nascent

polypeptide can alter overall ribosome structure, further influenc-

ing protein trafficking [78]. Indeed, one question for future

research raised by Pechmann et al. [78] is the extent to which the

ribosome tunnel communicates with factors at the ribosome exit

site, including molecular chaperones such as trigger factor, N-

acetyl transferases and translocation factors such as secA.

In addition to influencing communication pathways from the

inside to the outside of the ribosome, L4 can also function as a

transcriptional repressor and, independently, as a translational

repressor. In E. coli, L4 is an essential gene and regulates the S10

ribosomal protein operon by binding to the highly structured

mRNA within the S10 leader some 30 bp upstream of the S10

gene, causing premature termination of transcription [79,80]. In

E. coli, the absence of L4 would consequently lead to an increase in

S10 operon output. Our proteomic and transcript datasets do not

support this model of regulation in C. difficile and it may be that in

C. difficile, S10 regulation is more akin to that of the Gram positive

model organism, B. subtilus. In B. subtilus, L4 is again an essential

gene and a single 15 kbp transcriptional unit encompassing the

S10, spc and a gene clusters is predicted [81,82]. In C. difficile strain

630, the S10 operon is encoded by CD0072 – CD0081. In silico

analysis using the biocyc operon predictor [83] suggests that the

S10 gene exists in a transcriptional unit by itself, with a further

four transcriptional units (Figure 4) encompassing L3–L15

(CD0073, rplC – CD0089, rplO), secY – L36 (CD0090, prlA –

CD0094A, rpmJ), S13 – S4 (CD0095, rpsM – CD0097, rpsD) and

DNA directed RNA polymerase a subunit (CD0098, rpoA). Thus

the transcriptional arrangement as predicted for C. difficile is quite

different to that of E. coli and, possibly, B. subtilus. The current

GeLC-MS data indicates that abundance of the regulatory protein

L4 (CD0074, rplD) is 5.49 fold lower under heat stress and that L2

(CD0076, rplB) and L5 (CD0084, rplE) are each down regulated

by some 3-fold. In addition, S8 (CD0085, rpsH), which is also

predicted to play a regulatory role in E. coli, was upregulated by

2.1-fold, a change corroborated by our microarray data in which

S8 was upregulated 1.8 fold [42]. Autogenous RNA regulatory

structures are predicted to exist upstream of certain ribosomal

protein genes including S10, L5 and S13 within a diversity of

bacteria [84], however no such regulatory RNA structures have

been predicted thus far within the rps leaders in C. difficile, possibly

as a result of very different RNA secondary structures [80,84,85]

in this organism. It is as yet unclear if L4, L8 or S4 proteins

influence regulation of the ribosomal protein gene operons in C.

difficile and this may be an area for future investigations.

Molecular Chaperones and protein folding/export
Of the class I heat shock proteins, GroES (CD0193, 2.6 fold)

was upregulated, commensurate with its upregulation at the

transcript level of 2.04 fold [42], however its co chaperone GroEL

was unchanged at 1.26 fold up (2.6 fold up in array), as was the

DnaK chaperone at 1.29 fold up (2.18 fold up in array). We did

not identify DnaJ or GrpE proteins in the combined proteome,

however grpE – upregulated by 2.4 fold in the array – was one of

the proteins unique to the 37uC proteome (Table S3) although it

should be noted that we have a smaller overall proteome from the

GeLC/MS approach than from iTRAQ. The Class III heat shock

proteins clpP1 (CD3305, 1.9 fold up) and clpB (CD2020, 4.289

fold up) were up regulated, as per their iTRAQ data. The

abundance of the class IV heat shock protein htpG (CD0273,

HSP90) did not change. ClpP1 was unchanged in the array, and

while raw expression data for both clpB and htpG suggested

Figure 4. Organisation of the S10-spx-a region in the genome of Clostridium difficile strain 630. Black line: Biocyc predicted transcriptional
units. Red boxes: Location of autogenous RNA regulatory structures in Escherichia coli. Orange underscore: protein with predicted regulatory
function.
doi:10.1371/journal.pone.0088960.g004
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upregulation of their transcripts [42], their p values in the array

dataset were .0.05 for both genes.

The greA protein was originally identified as a transcription

elongation/cleavage factor but has recently been shown to possess

a molecular chaperone function. GreA (CD3553) suppresses

protein aggregation and, much like clpB, promotes the reactiva-

tion of denatured proteins. Thus it confers resistance to heat and

oxidative stresses [86] and in in the current work was downreg-

ulated 2.2 fold by heat stress.. As one of the most abundant

transcription factors in the cell, GreA provides a link between

RNA polymerase/transcription apparatus and protein quality

control by interacting with ribosome subunits and chaperones

including DnaK, DnaJ, GroES and ClpX [86]. The reason for

GreA protein downregulation is unclear at present – the transcript

did not change in our array experiment [42] – however it is known

to stimulate the endonucleolytic activity of RNA polymerase when

bound to the b9 subunit [87,88], thus allowing transcription to

continue past template-encoded arresting sites. Thus, in the

absence of GreA, there will tend to be an increase in

transcriptional pausing and therefore a global decrease in

transcription and translation rates, an hypothesis strengthened

by our observation that elongation factor P (CD1246, efp), an

essential gene required for peptidyl transferase activity and the

rescue of stalled ribosomes [89,90], was down regulated by 3.3

fold, although it’s transcript was unchanged in the array [42].

During translation, the smooth transition from the inside of the

polypeptide exit tunnel of the ribosome to the outside ribosome

surface is most likely facilitated by the presence of ribosome-

associated chaperone systems [91]. Trigger factor is a cytosolic

ATP-independent, ribosome exit tunnel port-bound chaperone

found in all eubacteria and, as the first protein to interact with

nascent polypeptides as they emerge from exit site on the ribosome

(Figure 5), is the best studied of the ribosome associated

chaperones [78]. TF binds cyclically to L23 – unchanged in our

three datasets – on the ribosome [92] and in accordance with our

previous transcriptomic analysis [42], where it was down regulated

by 1.57 fold , TF (CD3306, tig) was downregulated by some 4.9-

fold under heat stress, which initially appears somewhat counter-

intuitive. However in E. coli, TF is not a heat stress inducible

protein and thus is not required for viability at high temperatures;

Figure 5. Proposed model for translational stalling under heat stress in Clostridium difficile strain 630. Trigger factor (TF) docks with L23
on the ribosome and is the first protein to interact with nascent polypeptides as they emerge from exit site on the ribosome, preventing or reversing
premature protein folding. At 37uC there is competitive association of the signal recognition particle (SRP) and TF, both of which interact with L23,
with nascent chains emerging from the ribosome: TF inhibits binding of the SRP to proteins destined to remain in the cytoplasm and these are
passed to the dnaJ/K/GrpE and GroES/L chaperone systems, resulting in correctly folded mature cytosolic proteins. Upon temperature upshift to
41uC, however, decreased abundance of trigger factor enables non client proteins to be targeted for export by the SRP, and consequently fewer
proteins are presented to the dnaJ/K/GrpE and GroES/L systems. Under heat stress, the dnaJ/K/grpE system is titrated by misfolded proteins, resulting
in decreased stringency of protein quality control at the ribosome exit port: this prevent nascent chains from emerging cleanly from the ribosome
thereby causing translational stalling and decreased growth rates.
doi:10.1371/journal.pone.0088960.g005
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rather, it is proposed to play a role in protecting cells against low

temperatures, under which conditions its abundance increases

[93]. TF can actually prevent or reverse premature protein folding

at a molecular level and thus plays a role in preventing premature

or mis-folding of nascent polypeptide chains at lower temperatures

[94]. At higher temperatures however, following interaction with

TF, the DnaK chaperone system, including the DnaJ and GrpE

co-chaperones, becomes more important, assisting de novo folding

of cytosolic proteins both co- and post-translationally [94].

TF also influences protein export via the Sec system – the

abundance of whose gene products were largely unchanged in our

experiments [40,42]. Under normal circumstances, there is

competitive association of the signal recognition particle (SRP,

encoded in C. difficile by CD1251 – ftsY) and TF with nascent

chains emerging from the ribosome [91]. The hydrophobic leaders

of proteins destined for export via the two Sec systems of C. difficile

[25] cause TF to dissociate thereby allowing an increase in the

association of the SRP with the ribosome – which is subsequently

targeted to the membrane via interaction between the SRP (ftsY,

CD1251) and the SRP receptor (CD1252, ffH). TF, in turn,

inhibits binding of the SRP to the less hydrophobic leaders of non-

client proteins destined to remain in the cytoplasm (Figure 4).

Thus it is clear that an absence of TF will tend to accelerate

protein export [95,96], or certainly, the targeting of proteins to the

secYEG translocon. Indeed, the wet weight of protein recovered

from trichloroacetic acid precipitations of culture supernatant

proteins from equal volumes of 37uC and 41uC grown-cultures of

C. difficile strain 630 showed a ,40% increase in protein from the

41uC culture (Ternan, unpublished data). Whether this is due to

increased traffic through the secYEG translocon under heat stress

remains to be determined although it is likely, given that TF and

dnaK share the same substrates [97]. The actions of TF and dnaK

– which we have previously shown is upregulated under heat stress

[40,42] – overlap to ensure continued accuracy of ribosomal

output irrespective of the environmental conditions. However,

under proteotoxic stress, which may be defined as the intracellular

accumulation of misfolded or mistargetted proteins, translation

elongation is often attenuated as cells reduce global protein

synthesis. This happens in bacteria under most, if not all, types of

adverse conditions [98]. Association of the dnaK chaperone with

the ribosome decreases under proteotoxic stress as it is titrated by

misfolded proteins in the cytosol: we propose that this, and the

decreased abundance of TF, will prevent nascent chains from

Figure 6. Functional category distribution changes (% of proteins identified) in the 376C and 416C GeLC/MS proteomes from
Clostridium difficile strain 630. Blue: 37uC proteome; Orange: 41uC proteome.
doi:10.1371/journal.pone.0088960.g006
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emerging cleanly from the ribosome thereby causing translational

stalling (Figure 5).

Motility and Flagella
With regard to motility and as per our iTRAQ and microarray

analyses [40,42] we again noted downregulation of the flagellar

filiament protein, FliC (CD0239). The recent work of Kitagawa et

al. [99] showed that in E. coli, FliC is post-translationally negatively

regulated by the degradative action of the clpX/ClpP1 protease

system on the master regulator of flagellar biosynthesis, flhDC. We

noted upregulation of the clpP1 bipartite protease (CD3305, 1.9

fold up) in the current work, and of both clpP1 and the substrate

binding clpX in our iTRAQ dataset [40], while their transcripts did

not change [42]. The presence and identity, therefore, of

homologues of flhDC in C. difficile remains to be established.

Kitagawa et al. [99] suggest that in their model of flagellar

regulation in E. coli, post-translational regulation contributes more

to the control of flagellar biogenesis than transcriptional control: this

is consistent with our observation that expression of the putative

flagellar regulatory genes did not change under heat stress [42].

Virulence factors
The main virulence factors of C. difficile are the host damaging

toxins, A and B, and the transmissible agents, the spores. In

addition, a number of other factors have been identified as

important for C. difficile pathogenesis [100], including the binary

toxin found in certain ribotypes (but not in CD630), proteins

associated with motility such as FliC and those associated with

adhesion (e.g. SLPs, cwps, fibronectin binding proteins). Yet other

proteins such as haemolysins and collagenases allow host

interaction and immune evasion. By and large, most of these

virulence factor transcripts are downregulated at 41uC [42],

although within the proteomes the picture is less clear since we do

not have total global proteome coverage. However, integration of

our proteome data with the array data does suggest down

regulation of C. difficile virulence under heat stress. In terms of

maintenance of cellular metabolic activities and stress survival

however, we noted that changes in the % distribution of functional

categories (Figure 6) indicated an increase in proteins associated

with both detoxification and adaptation to atypical conditions as

well as those associated with amino acid and lipid (fatty acid)

metabolism. There was also a decrease in proteins associated with

the initiation of protein synthesis and with transcriptional

elongation, and these observations are supported by the proteins

identified in the, ‘unique’ 37uC and 41uC proteomes.

Conclusion

An important aspect of systems biology research is that in order to

be able to construct an accurate model for a system, it is necessary to

have multiple measurements of changes in the components of that

system. Consequently, the integration of transcriptomic and

proteomic data is required to obtain a comprehensive molecular

characterisation of a biological system [101]. Many investigators

look at proteomes, or other ’omes, individually in isolation. Fewer

investigate and attempt to tease apart changes in both proteins and

transcripts – and those that do so do not always achieve perfect

protein/mRNA abundance correlations: the lack of correlation

between transcripts and protein abundance is well known. Thus,

there is a requirement for additional studies that will allow links to

be defined, if they exist, between the various parts of the central

dogma of biological information flow. We have analysed the same

biological conditions using different experimental procedures and,

crucially, at different times, to understand how selection of a

proteomics workflow influences the quantity and quality of data

generated. This has allowed us to validate the biological picture of

heat stress response and adaptation in C. difficile and develop some

perspectives on the two different proteomic workflows. Analysis of

cost, time and data quality associated with iTRAQ and GeLC/MS

indicates that reproducibility is very good under both workflows.

However, the cost to researchers that do not have on demand LC/

MS facilities could be considerable. For biological duplicate GeLC/

MS experiment, as here, where 8 gel fractions are injected 3 times

across four samples, LC/MS analysis could take perhaps 4 weeks’

machine time at a cost of almost £10,000, assuming a conservative

LC/MS cost of £100 per sample: this is before proceeding to carry

out the emPAI and fold change calculations. On the other hand, the

iTRAQ 4 plex kit costs in the region of £1200, so our five strong

cation exchange fractions [40] would comprise some £1500 worth

of LC/MS time, in addition to the entire workflow – including

sample preparation and automated protein plot software analysis –

taking less than a week. Thus, from a technical standpoint and in

terms of proteome coverage, researcher time not withstanding,

iTRAQ labelling will generate robust quantitative data more

rapidly and economically.

The data presented here indicates a decrease in transcription

and translation under heat stress that may well feed back into

transcriptional control of ribosomal protein genes. We believe that

the key players may be misfolded cytosolic proteins, coupled with

the ability of the system to deal with these. It is clear that C. difficile

emerges relatively unscathed by temperature upshift to 41uC,

despite considerable protein synthesis/folding and energy conser-

vation stress and it is clear that C. difficile can compensate for

misfolding events by increasing the abundance of chaperone

proteins such as GroES/L and the dnaK system [40,42].

Therefore a clearer picture of decreased virulence, combined

with transcriptional and translational stalling mediated by a

potentially complex network of regulatory mechanisms, emerges.
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12. Pépin J, Valiquette L, Alary ME, Villemure P, Pelletier A, et al. (2004)

Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003:

a changing pattern of disease severity. Can Med Assoc J 171: 466–472.

13. Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, et al. (2010) The

changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23:
529–549.

14. Wilcox MH, Shetty N, Fawley WN, Shemko M, Coen P, et al (2012) Changing
epidemiology of Clostridium difficile infection following the introduction of a

national ribotyping based surveillance scheme in England. Clin Infect Dis 55:

1056–1063.

15. Cartman ST, Heap JT, Kuehne SA, Cockayne A, Minton NP (2010) The

emergence of ‘hypervirulence’ in Clostridium difficile. Intl J Med Microbiol 300:
387–395.

16. Sirard S, Valiquette L, Fortier LC (2011) Lack of association between clinical

outcome of Clostridium difficile infections, strain type, and virulence-associated
phenotypes. J Clin Microbiol 49: 4040–4046.

17. Burns DA, Heeg D, Cartman ST, Minton NP (2011) Reconsidering the
sporulation characteristics of hypervirulent Clostridium difficile BI/NAP1/027.

PLoS ONE 6(9): e24894.

18. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton NP, et al. (2006)

The multidrug-resistant human pathogen Clostridium difficile has a highly mobile,

mosaic genome. Nat Genet 38: 779–786.

19. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, et al. (2010)

Evolutionary dynamics of Clostridium difficile over short and long time scales.
Proc Natl Acad Sci U S A 107: 7527–7532.

20. Forgetta V, Oughton MT, Marquis P, Brukner I, Blanchette R, et al. (2011)

Fourteen-genome comparison identifies DNA markers for severe-disease-
associated strains of Clostridium difficile. J Clin Microbiol 49: 2230–2238.

21. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, et al. (2010)
The ClosTron: Mutagenesis in Clostridium refined and streamlined. J Microbiol

Meth 80: 49–55.

22. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The

ClosTron: A universal gene knock-out system for the genus Clostridium.

J Microbiol Meth 70: 452–464.

23. Twine SM, Reid CW, Aubry A, McMullin DR, Fulton KM, et al. (2009)

Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol 191: 7050–
7062.

24. Dingle TC, Mulvey GL, Armstrong GD (2011) Mutagenic analysis of the

Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to
virulence in hamsters. Inf Immun 79: 4061–4067.

25. Fagan RP, Fairweather NF (2011) Clostridium difficile has two parallel and
essential Sec secretion systems. J Biol Chem 286: 27483–27493.

26. Saujet L, Monot M, Dupuy B, Soutourina O, Martin-Verstraete I (2011). The

key sigma factor of transition phase, SigH, controls sporulation, metabolism,
and virulence factor expression in Clostridium difficile. J Bacteriol 193: 3186–3196

27. Olling A, Seehase S, Minton NP, Tatge H, Schröter S, et al. (2012) Release of
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