7 research outputs found

    Biofuels and thermal barrier:a review on compression ignition engine performance, combustion and exhaust gas emission

    Get PDF
    The performance of an internal combustion engine is affected when renewable biofuels are used instead of fossil fuels in an unmodified engine. Various engine modifications were experimented by the researchers to optimise the biofuels operated engine performance. Thermal barrier coating is one of the techniques used to improve the biofuels operated engine performance and combustion characteristics by reducing the heat loss from the combustion chamber. In this study, engine tests results on performance, combustion and exhaust emission characteristics of the biofuels operated thermal barrier coated engines were collated and reviewed. The results found in the literature were reviewed in three scenarios: (i) uncoated versus coated engine for fossil diesel fuel application, (ii) uncoated versus coated engine for biofuels (and blends) application, and (iii) fossil diesel use on uncoated engine versus biofuel (and blends) use on coated engine. Effects of injection timing, injection pressure and fuel properties on thermal barrier coatings were also discussed. The material type, thickness and properties of the coating materials used by the research community were presented. The effectiveness and durability of the coating layer depends on two key properties: low thermal conductivity and high thermal expansion coefficient. The current study showed that thermal barrier coatings could potentially offset the performance drop due to use of biofuels in the compression ignition engines. Improvements of up to 4.6% in torque, 7.8% in power output, 13.4% in brake specific fuel consumption, 15.4% in brake specific energy consumption and 10.7% in brake thermal efficiency were reported when biofuels or biofuel blends were used in the thermal barrier coated engines as compared to the uncoated engines. In coated engines, peak cylinder pressure and exhaust gas temperature were increased by up to 16.3 bar and 14% respectively as compared to uncoated condition. However, changes in the heat release rates were reported to be between −27% and +13.8% as compared to uncoated standard engine. Reductions of CO, CO2, HC and smoke emissions were reported by up to 3.8%, 11.1%, 90.9% and 63% respectively as compared to uncoated engines. Significant decreases in the PM emissions were also reported due to use of thermal barrier coatings in the combustion chamber. In contrast, at high speed and at high load operation, increase in the CO and CO2 emissions were also reported in coated engines. Coated engines gave higher NOx emissions by about 4–62.9% as compared to uncoated engines. Combined effects of thermal barrier coatings and optimisation of fuel properties and injection parameters produced further performance and emissions advantages compared to only thermal barrier coated engines. Overall, current review study showed that application of thermal barrier coatings in compression ignition engines could be beneficial when biofuels or biofuel blends are used instead of standard fossil diesel. However, more research is needed combining coatings, types of biofuels and other engine modifications to establish a concrete conclusion on the effectiveness of the thermal barrier when biofuels are used in the compression ignition engine. Reduction of NOx emissions is another important R & D area

    Highly efficient recovery of biophenols onto graphene oxide nanosheets: Valorisation of a biomass

    No full text
    In this study, graphene oxide (GO) nanosheets were evaluated for the recovery of biophenols from an agricultural biomass, olive leaf. Modified Hummer's method was used to synthesize GO by natural oxidation of graphite. The adsorbent was characterized by several novel analysis methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the other hand, optimization of the adsorption process was applied utilizing multivariate statistic technique such as Response Surface Methodology (RSM) in order to consider any possible interaction between variables with less number of experiments as well as to model a response affected by several variables. The outcome of the present study indicates that the optimum conditions for the adsorption of were 4.57/10 of pH together with 24.62/30 degrees C of temperature and 3 mg of GO to achieve the maximum yields of each dependent variable such as total biophenol content (TBC) and the most prevalent compound, oleuropein (OC). The verification of the calculated models was held by several error function analysis. (C) 2017 Elsevier B.V. All rights reserved
    corecore