313 research outputs found

    Medical Applications for 3D Printing: Recent Developments

    Get PDF
    This is a review of some of the recent developments in the application of 3D printing to medicine. The topic is introduced with a brief explanation as to how and why 3D is changing practice, teaching, and research in medicine. Then, taking recent examples of progress in the field, we illustrate the current state of the art. This article concludes by evaluating the current limitations of 3D printing for medical applications and suggesting where further progress is likely to be made

    Investigation of improved aerodynamic performance of isolated airfoils using CIRCLE method

    Get PDF
    CC BY-NC-ND licenseThe PhD research of Moin U Ahmed is partly sponsored by Cummins Turbo Technologies Ltd and partly by Queen Mary University of London

    Towards a realistic Standard Model from D-brane configurations

    Full text link
    Effective low energy models arising in the context of D-brane configurations with Standard Model (SM) gauge symmetry extended by several gauged abelian factors are discussed. The models are classified according to their hypercharge embeddings consistent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.Comment: 22 pages, 12 EPS figures, some clarifications/references adde

    Low Reynolds number proprotor aerodynamic performance improvement using the continuous surface curvature design approach

    Get PDF
    Low Reynolds number blade profiles of Re_C =10^5 to 2*10^5 as as based on chord length and used for small unnamed air vehicles, and near space applications are investigated for single and counter-rotating (coaxial) proprotors, i.e. acting as rotors or propellers. Such profiles are prone for early stall, significantly reducing their maximum lift to drag ratio. Two profiles previously designed by our continuous surface curvature design approach named as CIRCLE are investigated in order to improve the performance of the proprotors. The profiles are redesigns of the common symmetric NACA0012 and asymmetric E387 profiles. Using general arguments based on composite efficiency and rotor’s lift to drag ratio, the performance envelope is noticeably increased when using the redesigned profiles for high angles of attack due to stall delay. A new approach is derived to account for the distance between the rotors of a coaxial proprotor. It is coupled with a blade element method and is verified against experimental results. Single and coaxial CIRCLE-based proprotors are investigated against the corresponding non CIRCLE-based proprotors at hover and axial translation. Noticeable improvements are observed in thrust increase and power reduction at high angles of attack of the blade’s profiles, particularly for the coaxial configuration. Plots of thrust, torque, power, composite efficiency and aerodynamic efficiency distributions are given and analysed

    Dynamic Modeling of Solar Dynamic Components and Systems

    Get PDF
    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level

    Structure and motion design of a mock circulatory test rig

    Get PDF
    Mock circulatory test rig (MCTR) is the essential and indispensable facility in the cardiovascular in vitro studies. The system configuration and the motion profile of the MCTR design directly influence the validity, precision, and accuracy of the experimental data collected. Previous studies gave the schematic but never describe the structure and motion design details of the MCTRs used, which makes comparison of the experimental data reported by different research groups plausible but not fully convincing. This article presents the detailed structure and motion design of a sophisticated MCTR system, and examines the important issues such as the determination of the ventricular motion waveform, modelling of the physiological impedance, etc., in the MCTR designing. The study demonstrates the overall design procedures from the system conception, cardiac model devising, motion planning, to the motor and accessories selection. This can be used as a reference to aid researchers in the design and construction of their own in-house MCTRs for cardiovascular studies

    Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Get PDF
    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI) engine with two pilot fuels (diesel and rapeseed methyl ester), and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME) single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NO X ), specific hydrocarbons (HC) and specific carbon dioxide (CO2) on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NO X emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NO X with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NO X varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.Peer reviewedFinal Published versio
    • …
    corecore