65 research outputs found

    Circumpolar habitat use in the southern elephant seal : implications for foraging success and population trajectories

    Get PDF
    In the Southern Ocean, wide-ranging predators offer the opportunity to quantify how animals respond to differences in the environment because their behavior and population trends are an integrated signal of prevailing conditions within multiple marine habitats. Southern elephant seals in particular, can provide useful insights due to their circumpolar distribution, their long and distant migrations and their performance of extended bouts of deep diving. Furthermore, across their range, elephant seal populations have very different population trends. In this study, we present a data set from the International Polar Year project; Marine Mammals Exploring the Oceans Pole to Pole for southern elephant seals, in which a large number of instruments (N = 287) deployed on animals, encompassing a broad circum-Antarctic geographic extent, collected in situ ocean data and at-sea foraging metrics that explicitly link foraging behavior and habitat structure in time and space. Broadly speaking, the seals foraged in two habitats, the relatively shallow waters of the Antarctic continental shelf and the Kerguelen Plateau and deep open water regions. Animals of both sexes were more likely to exhibit area-restricted search (ARS) behavior rather than transit in shelf habitats. While Antarctic shelf waters can be regarded as prime habitat for both sexes, female seals tend to move northwards with the advance of sea ice in the late autumn or early winter. The water masses used by the seals also influenced their behavioral mode, with female ARS behavior being most likely in modified Circumpolar Deepwater or northerly Modified Shelf Water, both of which tend to be associated with the outer reaches of the Antarctic Continental Shelf. The combined effects of (1) the differing habitat quality, (2) differing responses to encroaching ice as the winter progresses among colonies, (3) differing distances between breeding and haul-out sites and high quality habitats, and (4) differing long-term regional trends in sea ice extent can explain the differing population trends observed among elephant seal colonies.Publisher PDFPeer reviewe

    Optimal Patch-Leaving Behaviour: A Case Study Using The Parasitoid Cotesia rebecula

    Get PDF
    1. Parasitoids are predicted to spend longer in patches with more hosts, but previous work on Cotesia rubecula (Marshall) has not upheld this prediction. Tests of theoretical predictions may be affected by the definition of patch leaving behaviour, which is often ambiguous. 2. In this study whole plants were considered as patches and assumed that wasps move within patches by means of walking or flying. Within-patch and between-patch flights were distinguished based on flight distance. The quality of this classification was tested statistically by examination of log-survivor curves of flight times. 3. Wasps remained longer in patches with higher host densities, which is consistent with predictions of the marginal value theorem (Charnov 1976). Under the assumption that each flight indicates a patch departure, there is no relationship between host density and leaving tendency. 4. Oviposition influences the patch leaving behaviour of wasps in a count down fashion (Driessen et al. 1995), as predicted by an optimal foraging model (Tenhumberg, Keller & Possingham 2001). 5. Wasps spend significantly longer in the first patch encountered following release, resulting in an increased rate of superparasitism

    Extreme Conservation Leads to Recovery of the Virunga Mountain Gorillas

    Get PDF
    As wildlife populations are declining, conservationists are under increasing pressure to measure the effectiveness of different management strategies. Conventional conservation measures such as law enforcement and community development projects are typically designed to minimize negative human influences upon a species and its ecosystem. In contrast, we define “extreme” conservation as efforts targeted to deliberately increase positive human influences, including veterinary care and close monitoring of individual animals. Here we compare the impact of both conservation approaches upon the population growth rate of the critically endangered Virunga mountain gorillas (Gorilla beringei beringei), which increased by 50% since their nadir in 1981, from approximately 250 to nearly 400 gorillas. Using demographic data from 1967–2008, we show an annual decline of 0.7%±0.059% for unhabituated gorillas that received intensive levels of conventional conservation approaches, versus an increase 4.1%±0.088% for habituated gorillas that also received extreme conservation measures. Each group of habituated gorillas is now continuously guarded by a separate team of field staff during daylight hours and receives veterinary treatment for snares, respiratory disease, and other life-threatening conditions. These results suggest that conventional conservation efforts prevented a severe decline of the overall population, but additional extreme measures were needed to achieve positive growth. Demographic stochasticity and socioecological factors had minimal impact on variability in the growth rates. Veterinary interventions could account for up to 40% of the difference in growth rates between habituated versus unhabituated gorillas, with the remaining difference likely arising from greater protection against poachers. Thus, by increasing protection and facilitating veterinary treatment, the daily monitoring of each habituated group contributed to most of the difference in growth rates. Our results argue for wider consideration of extreme measures and offer a startling view of the enormous resources that may be needed to conserve some endangered species

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    Marine mammals exploring the oceans pole to pole

    Get PDF
    Polar oceans are poorly monitored despite the important role they play in regulating Earth’s climate system. Marine mammals equipped with biologging devices are now being used to fill the data gaps in these logistically difficult to sample regions. Since 2002, instrumented animals have been generating exceptionally large data sets of oceanographic CTD casts (>500,000 profiles), which are now freely available to the scientific community through the MEOP data portal (http://meop.net). MEOP (Marine Mammals Exploring the Oceans Pole to Pole) is a consortium of international researchers dedicated to sharing animal-derived data and knowledge about the polar oceans. Collectively, MEOP demonstrates the power and cost-effectiveness of using marine mammals as data-collection platforms that can dramatically improve the ocean observing system for biological and physical oceanographers. Here, we review the MEOP program and database to bring it to the attention of the international community.http://www.tos.org/oceanographyam2017Mammal Research InstituteZoology and Entomolog

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education)

    Proceedings of Patient Reported Outcome Measure’s (PROMs) Conference Oxford 2017: Advances in Patient Reported Outcomes Research

    Get PDF
    A33-Effects of Out-of-Pocket (OOP) Payments and Financial Distress on Quality of Life (QoL) of People with Parkinson’s (PwP) and their Carer

    Distribution and Cconnection to other Plant-Communities of Genista radiata (L.) Scop in the South Tyrol (Italy)

    Get PDF
    Es werden die Genista radiata-BestĂ€nde an der Mendel in SĂŒdtirol (Italien) beschrieben und ihr Gesellschaftsanschluß diskutiert. Das Genisto-Festucetum alpestris Peer 83 besidelt steile sĂŒdexponierte KalkhĂ€nge der hochmontanen und subalpinen Stufe und ersetzt z.T. den ZwergstrauchgĂŒrtel mit Pinus mugo. Ähnlich zusammengesetzt ist das Genisto-Festucetum alpestris pinetosum Peer 83, das in den ÂĄlockeren Erika-KiefernwĂ€ldern auftritt und bis in die tiefmontane Stufe hinunterreicht. Keinerlei syntaxonomische Bedeutung besitzt Genista radiata in den thermophilen Buschwaldgesellschaften, in denen die Pflanze lediglich eine Variante zum Orno-Ostryetum seslerietosum Peer 81 darstellt und speziell in der Saumzone anzutreffen ist. Auch in den LĂ€rchenwiesen der Kammlagen kommt Genista radiata nur sporadisch vor. Sie ist hier mit dem Festucetum nigrescentis laricetosum subass. prov. verzahnt.IstraĆŸene su vegetacijske sastojine vrste Genista radiata u juĆŸnom Tirolu i razmatrana njihova fitocenoloĆĄka pripadnost. Asocijacija Genisto-Festucetum alpestris Peer 83 nastava strme, juĆŸne vapnenačke obronke visokobrdskog i subalpskog pojasa. Subasocijacija Genisto-Festucetum alpestris pinetosum Peer 83 dolazi u rijetkim borovim ĆĄumama s crnjuĆĄom i spuĆĄta se do u niĆŸi brdski pojas. Termofilne niske ĆĄume, u kojima Genista radiata nema posebno sintaksonomsko značenje, označene su samo kao varijanta zajednice Orno-Ostryetum seslerietosum Peer 81. Genista radiata dolazi također na travnjacima s ariĆĄem, ali samo sporadično i to u mjeĆĄavini sa zajednicom Festucetum nigrescentis laricetosnm subass. prov.The Genista radiata-communities of the Mendel in the South Tyrol (Italy) are described and their connection to other plant-communities is discussed. Genisto-Festucetum alpestris Peer 83 settles on steep, south- exposed colcareous slopes of high-mountain and subalpine altitudes and replaces particularly the dwarf-shrub-belt with Firms mugo. Similar contents aire found in Genisto-F estucetum alpestris pinetasum Peer 83, which occurs in undensed Erico-Pinetum-communities and reaches down to the low-mountain-altitude. In the thermophilic bush-communities, in which Genista radiata is found only as a variant of Orneto-Ostryetum seslerie- tosum (Peer 81), the plant has no syntaxonomic importance. Genista radiata especially is found in the edge-zone. In the grassland of the larch- communities of the ridges Genista radiata appears only sporadically. Here the plant appeals in Festucetum nigrescentis laricetosum subass. prov

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species. Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (Dirección Nacional del Antártico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National d’Etudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project “RAATD”; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut
    • 

    corecore