237 research outputs found
Climate change and asset prices: hedonic estimates for North American ski resorts
We use a hedonic framework to estimate and simulate the impact of global warming on real estate prices at North American ski resorts. To do so, we combine data on resort-area housing prices from two sources--data on average prices for U.S. Census tracts across a broad swath of the western U.S. and data on individual home sales for four markets in the western U.S. and Canada, each available over multiple decades--with detailed weather data and characteristics of ski resorts in those areas. Our OLS and fixed-effects models of changes in house prices with respect to medium-run changes in the share of snowfall in winter precipitation yield precise and consistent estimates of positive snowfall effects on housing values in both data sources. We use our estimates to simulate the impact of likely climate shifts on house prices in coming decades and find substantial variation across resort areas based on climatic characteristics such as longitude, elevation, and proximity to the Pacific Ocean. Resorts that are unfavorably located face likely large negative effects on home prices due to warming, unless adaptive measures are able to compensate for the deterioration of conditions in the ski industry.Environmental protection ; Housing - Prices ; Skis and skiing
Orion Optical Navigation for Loss of Communication Lunar Return Contingencies
The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return
Adding value? A review of the international literature on the role of higher education in police training and education
This paper reviews the current English-language literature on developments in police
training and education in order to identify common areas where higher education ‘adds
value’ to police learning and development. Reforms in training and education are
constituent parts of the ongoing shift to a service-oriented professional police in a
number of countries. A comparative analysis of the literature on police training and
education is provided here which focuses primarily on the USA, the European Union,
Australia and India. The review provides a contribution to international policy debates
about future developments in this area
A Review of the Properties of Nb3Sn and Their Variation with A15 Composition, Morphology and Strain State
This article gives an overview of the available literature on simplified,
well defined (quasi-)homogeneous laboratory samples. After more than 50 years
of research on superconductivity in Nb3Sn, a significant amount of results are
available, but these are scattered over a multitude of publications. Two
reviews exist on the basic properties of A15 materials in general, but no
specific review for Nb3Sn is available. This article is intended to provide
such an overview. It starts with a basic description of the Niobium-Tin
intermetallic. After this it maps the influence of Sn content on the the
electron-phonon interaction strength and on the field-temperature phase
boundary. The literature on the influence of Cu, Ti and Ta additions will then
be briefly summarized. This is followed by a review on the effects of grain
size and strain. The article is concluded with a summary of the main results.Comment: Invited Topical Review for Superconductor, Science and Technology.
Provisionally scheduled for July 200
Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California
A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions
Recovery of the herbaceous layer in the young silver birch and black alder stands that developed spontaneously after a forest fire
The studies, which were conducted in southern Poland, focused on the recovery of the herb layer in
17-year-old post-fire silver birch and black alder forests. Although both types of stands, which are of the same age, developed spontaneously, the alder stands occupied damper sites (with thicker A horizons that survived the fire) than those in the birch forests. We surveyed the migration rates of 44 woodland species, primarily ancient woodland indicators, into both forests and the potential differences in these rates depending on their moisture regime and the community type represented by unburned forests, which were treated as the source of the woodland species pool. Additionally, the role of local depressions with high humidity that were covered by post-fire alder woods in the colonization process, as well as species survivorship and recolonisation, were estimated. Woodland species showed diverse migration paces among the sites; most of them migrated faster on more fertile sites with a higher humidity. Small patches of post-fire alder woods contributed to the recolonisation process since many woodland species in the herb layer survived the fire due to its high humidity, which inhibited the intensity of the forest fire. The recovery of woodland species in post-fire woods is the combined effect of regeneration, which relies on autochthonic propagules, and secondary succession, which is based on allochthonic propagules. Local depressions, which provide
refuges for fire-sensitive, dispersal-limited species, contribute to their survivorship and thus to the successive
recovery of herbaceous layers after a fire
High throughput methods applied in biomaterial development and discovery
The high throughput discovery of new materials can be achieved by rapidly screening many different materials synthesised by a combinatorial approach to identify the optimal material that fulfils a particular biomedical application. Here we review the literature in this area and conclude that for polymers, this process is best achieved in a microarray format, which enable thousands of cell-material interactions to be monitored on a single chip. Polymer microarrays can be formed by printing pre-synthesised polymers or by printing monomers onto the chip where on-slide polymerisation is initiated.
The surface properties of the material can be analysed and correlated to the biological performance using high throughput surface analysis, including time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements. This approach enables the surface properties responsible for the success of a material to be understood, which in turn provides the foundations of future material design. The high throughput discovery of materials using polymer microarrays has been explored for many cell-based applications including the isolation of specific cells from heterogeneous populations, the attachment and differentiation of stem cells and the controlled transfection of cells.
Further development of polymerisation techniques and high throughput biological assays amenable to the polymer microarray format will broaden the combinatorial space and biological phenomenon that polymer microarrays can explore, and increase their efficacy. This will, in turn, result in the discovery of optimised polymeric materials for many biomaterial applications
Mitochondrial Changes in Ageing Caenorhabditis elegans – What Do We Learn from Superoxide Dismutase Knockouts?
One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the “vicious cycle” theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the “vicious cycle” theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the “vicious cycle” theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed
- …