877 research outputs found
Introducing Small-World Network Effect to Critical Dynamics
We analytically investigate the kinetic Gaussian model and the
one-dimensional kinetic Ising model on two typical small-world networks (SWN),
the adding-type and the rewiring-type. The general approaches and some basic
equations are systematically formulated. The rigorous investigation of the
Glauber-type kinetic Gaussian model shows the mean-field-like global influence
on the dynamic evolution of the individual spins. Accordingly a simplified
method is presented and tested, and believed to be a good choice for the
mean-field transition widely (in fact, without exception so far) observed on
SWN. It yields the evolving equation of the Kawasaki-type Gaussian model. In
the one-dimensional Ising model, the p-dependence of the critical point is
analytically obtained and the inexistence of such a threshold p_c, for a finite
temperature transition, is confirmed. The static critical exponents, gamma and
beta are in accordance with the results of the recent Monte Carlo simulations,
and also with the mean-field critical behavior of the system. We also prove
that the SWN effect does not change the dynamic critical exponent, z=2, for
this model. The observed influence of the long-range randomness on the critical
point indicates two obviously different hidden mechanisms.Comment: 30 pages, 1 ps figures, REVTEX, accepted for publication in Phys.
Rev.
Formation of hot tear under controlled solidification conditions
Aluminum alloy 7050 is known for its superior mechanical properties, and thus finds its application in aerospace industry. Vertical direct-chill (DC) casting process is typically employed for producing such an alloy. Despite its advantages, AA7050 is considered as a "hard-to-cast" alloy because of its propensity to cold cracking. This type of cracks occurs catastrophically and is difficult to predict. Previous research suggested that such a crack could be initiated by undeveloped hot tears (microscopic hot tear) formed during the DC casting process if they reach a certain critical size. However, validation of such a hypothesis has not been done yet. Therefore, a method to produce a hot tear with a controlled size is needed as part of the verification studies. In the current study, we demonstrate a method that has a potential to control the size of the created hot tear in a small-scale solidification process. We found that by changing two variables, cooling rate and displacement compensation rate, the size of the hot tear during solidification can be modified in a controlled way. An X-ray microtomography characterization technique is utilized to quantify the created hot tear. We suggest that feeding and strain rate during DC casting are more important compared with the exerted force on the sample for the formation of a hot tear. In addition, we show that there are four different domains of hot-tear development in the explored experimental window-compression, microscopic hot tear, macroscopic hot tear, and failure. The samples produced in the current study will be used for subsequent experiments that simulate cold-cracking conditions to confirm the earlier proposed model.This research was carried out within the Materials innovation institute (www.m2i.nl) research framework, project no. M42.5.09340
Stability of Negative Image Equilibria in Spike-Timing Dependent Plasticity
We investigate the stability of negative image equilibria in mean synaptic
weight dynamics governed by spike-timing dependent plasticity (STDP). The
neural architecture of the model is based on the electrosensory lateral line
lobe (ELL) of mormyrid electric fish, which forms a negative image of the
reafferent signal from the fish's own electric discharge to optimize detection
of external electric fields. We derive a necessary and sufficient condition for
stability, for arbitrary postsynaptic potential functions and arbitrary
learning rules. We then apply the general result to several examples of
biological interest.Comment: 13 pages, revtex4; uses packages: graphicx, subfigure; 9 figures, 16
subfigure
Hyperbaric oxygen therapy improves colorectal anastomotic healing
Purpose: Hyperbaric oxygen treatment (HBOT) has been found to improve the healing of poorly oxygenated tissues. This study aimed to investigate the influence of HBOT on the healing in ischemic colorectal anastomosis. Methods: Forty Wistar rats were randomly divided into a treatment group that received HBOT for 10 consecutive days (7 days before and 3 days after surgery), or in a control group, which did not receive the therapy. Colectomy with an ischemic anastomosis was performed in all rats. In each group, the rats were followed for 3 or 7 days after surgery to determine the influence of HBOT on anastomotic healing. Results: Five rats from each group died during follow-up. No anastomotic dehiscence was seen in the HBOT group, compared to 37.5 % and 28.6 % dehiscence in the control group on postoperative day (POD) 3 and 7, respectively. The HBOT group had a significantly higher bursting pressure (130.9 ± 17.0 mmHg) than the control group (88.4 ± 46.7 mmHg; p = 0.03) on POD 3. On POD 3 and POD 7, the adhesion severity was significantly higher in the control groups than in the HBOT groups (p < 0.005). Kidney function (creatinine level) of the HBOT group was significantly better than of the control group on POD 7 (p = 0.001). Interestingly, a significantly higher number of CD206+ cells (marker for type 2 macrophages) was observed in the HBOT group at the anastomotic area on POD 3. Conclusion: Hyperbaric oxygen enhanced the healing of ischemic anastomoses in rats and improved the postoperative kidney function
Baryon number violation, baryogenesis and defects with extra dimensions
In generic models for grand unified theories(GUT), various types of baryon
number violating processes are expected when quarks and leptons propagate in
the background of GUT strings. On the other hand, in models with large extra
dimensions, the baryon number violation in the background of a string is not
trivial because it must depend on the mechanism of the proton stabilization. In
this paper we argue that cosmic strings in models with extra dimensions can
enhance the baryon number violation to a phenomenologically interesting level,
if the proton decay is suppressed by the mechanism of localized wavefunctions.
We also make some comments on baryogenesis mediated by cosmological defects. We
show at least two scenarios will be successful in this direction. One is the
scenario of leptogenesis where the required lepton number conversion is
mediated by cosmic strings, and the other is the baryogenesis from the decaying
cosmological domain wall. Both scenarios are new and have not been discussed in
the past.Comment: 20pages, latex2e, comments and references added, to appear in PR
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Throughput analysis in an automated material handling system
Throughput analysis in an automated material handling system, such as an Automated Storage and Retrieval System(AS/RS), may be a complex problem. In the past, several approaches have been used for such an analysis. This paperpresents a combinatorial ap proach to evaluating the throughput performance of a mini-load system, with simulation as the primary method of investigation.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …