1,519 research outputs found

    Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    Get PDF
    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics

    Ecosystem engineers maintain a rare species of butterfl y and increase plant diversity

    Get PDF
    We evaluated whether ecosystem engineers can accomplish two conservation goals simultaneously: (1) indirectly maintain populations of an endangered animal through habitat modifi cation and (2) increase riparian plant diversity. We tested for eff ects of a prominent ecosystem engineer, the beaver Castor canadensis, on populations of St. Francis' satyr butterfl y Neonympha mitchellii francisci and plant species richness and composition. We performed our test by surveying riparian vegetation communities in all stages of beaver-infl uenced wetland succession. We found that beavers created wetland habitats that supported plant species not found elsewhere in riparian zones and increased plant species diversity across the landscape by creating a novel combination of patch types. Our results confi rmed what others have found about engineering eff ects on plant diversity, but these results further demonstrated a case where ecosystem engineers indirectly maintain populations of rare animals by modifying the composition and diversity of plant communities within wetlands. Our research demonstrates how an ecosystem engineer can infl uence habitat availability and composition of plant communities important for an endangered insect, and maintain overall plant species diversity by increasing habitat heterogeneity

    Habitat fragmentation and its lasting impact on Earth’s ecosystems

    Get PDF
    We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services

    Drosophila suzukii: the genetic footprint of a recent, world-wide invasion

    Get PDF
    Native to Asia, the soft-skinned fruit pest Drosophila suzukii has recently invaded the United States and Europe. The eastern United States represents the most recent expansion of their range, and presents an opportunity to test alternative models of colonization history. Here we investigate the genetic population structure of this invasive fruit fly, with a focus on the eastern United States. We sequenced six X-linked gene fragments from 246 individuals collected from a total of 12 populations. We examine patterns of genetic diversity within and between populations and explore alternative colonization scenarios using Approximate Bayesian Computation. Our results indicate high levels of nucleotide diversity in this species and suggest that the recent invasions of Europe and the continental United States are independent demographic events. More broadly speaking, our results highlight the importance of integrating population structure into demographic models, particularly when attempting to reconstruct invasion histories. Finally, our simulation results illustrate the general challenge of reconstructing invasion histories using genetic data and suggest that genome-level data are often required to distinguish among alternative demographic scenarios

    How complex do models need to be to predict dispersal of threatened species through matrix habitats?

    Get PDF
    Persistence of species in fragmented landscapes depends on dispersal among suitable breeding sites, and dispersal is often influenced by the "matrix" habitats that lie between breeding sites. However, measuring effects of different matrix habitats on movement and incorporating those differences into spatially explicit models to predict dispersal is costly in terms of time and financial resources. Hence a key question for conservation managers is: Do more costly, complex movement models yield more accurate dispersal predictions? We compared the abilities of a range of movement models, from simple to complex, to predict the dispersal of an endangered butterfly, the Saint Francis' satyr (Neonympha mitchellii francisci). The value of more complex models differed depending on how value was assessed. Although the most complex model, based on detailed movement behaviors, best predicted observed dispersal rates, it was only slightly better than the simplest model, which was based solely on distance between sites. Consequently, a parsimony approach using information criteria favors the simplest model we examined. However, when we applied the models to a larger landscape that included proposed habitat restoration sites, in which the composition of the matrix was different than the matrix surrounding extant breeding sites, the simplest model failed to identify a potentially important dispersal barrier, open habitat that butterflies rarely enter, which may completely isolate some of the proposed restoration sites from other breeding sites. Finally, we found that, although the gain in predicting dispersal with increasing model complexity was small, so was the increase in financial cost. Furthermore, a greater fit continued to accrue with greater financial cost, and more complex models made substantially different predictions than simple models when applied to a novel landscape in which butterflies are to be reintroduced to bolster their populations. This suggests that more complex models might be justifiable on financial grounds. Our results caution against a pure parsimony approach to deciding how complex movement models need to be to accurately predict dispersal through the matrix, especially if the models are to be applied to novel or modified landscapes

    Is habitat fragmentation good for biodiversity?

    Get PDF
    Habitat loss is a primary threat to biodiversity across the planet, yet contentious debate has ensued on the importance of habitat fragmentation ‘per se’ (i.e., altered spatial configuration of habitat for a given amount of habitat loss). Based on a review of landscape-scale investigations, Fahrig (2017; Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics 48:1-23) reports that biodiversity responses to habitat fragmentation ‘per se’ are more often positive rather than negative and concludes that the widespread belief in negative fragmentation effects is a ‘zombie idea’. We show that Fahrig's conclusions are drawn from a narrow and potentially biased subset of available evidence, which ignore much of the observational, experimental and theoretical evidence for negative effects of altered habitat configuration. We therefore argue that Fahrig's conclusions should be interpreted cautiously as they could be misconstrued by policy makers and managers, and we provide six arguments why they should not be applied in conservation decision-making. Reconciling the scientific disagreement, and informing conservation more effectively, will require research that goes beyond statistical and correlative approaches. This includes a more prudent use of data and conceptual models that appropriately partition direct vs indirect influences of habitat loss and altered spatial configuration, and more clearly discriminate the mechanisms underpinning any changes. Incorporating these issues will deliver greater mechanistic understanding and more predictive power to address the conservation issues arising from habitat loss and fragmentation

    Is Fetal Growth Restriction Associated with a More Severe Maternal Phenotype in the Setting of Early Onset Pre-Eclampsia? A Retrospective Study

    Get PDF
    BACKGROUND: Both pre-eclampsia and fetal growth restriction are thought to result from abnormal placental implantation in early pregnancy. Consistent with this shared pathophysiology, it is not uncommon to see growth restriction further confound the course of pre-eclampsia and vice versa. It has been previously suggested that superimposed growth restriction is associated with a more severe pre-eclamptic phenotype, however this has not been a consistent finding. Therefore, we set out to determine whether the presence of fetal growth restriction among women with severe early-onset pre-eclampsia was associated with more severe maternal disease compared to those without a growth-restricted fetus. METHODS AND FINDINGS: We undertook a retrospective cohort study of women presenting to a tertiary hospital with severe early-onset pre-eclampsia (<34 weeks' gestation) between 2005-2009. We collected clinical data, including severity of pre-eclampsia, maternal and neonatal outcomes. Of 176 cases of severe pre-eclampsia, 39% (n = 68) were further complicated by fetal growth restriction. However, no significant difference was seen in relation to the severity of pre-eclampsia between those with or without a growth-restricted baby. The presence of concomitant growth restriction was however associated with a significantly increased risk of stillbirth (p = 0.003) and total perinatal mortality (p = 0.02). CONCLUSIONS: The presence of fetal growth restriction among women with severe early-onset pre-eclampsia is not associated with increased severity of maternal disease. However the incidence of stillbirth and perinatal death is significantly increased in this sub-population

    Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV

    Get PDF
    The nuclear modification factors of J/psi and psi(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of root S-NN = 5.02 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 mu b(-1) and 28 pb(-1), respectively. The measurements are performed in the dimuon rapidity range of vertical bar y vertical bar 25 GeV/c is seen with respect to that observed at intermediate p(T). The prompt psi(2S) meson yield is found to be more suppressed than that of the prompt J/psi mesons in the entire p(T) range.Peer reviewe
    corecore