1,160 research outputs found

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs

    Sporadic fatal insomnia in a young woman: A diagnostic challenge: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic fatal insomnia (sFI) and fatal familial insomnia (FFI) are rare human prion diseases.</p> <p>Case Presentation</p> <p>We report a case of a 33-year-old female who died of a prion disease for whom the diagnosis of sFI or FFI was not considered clinically. Following death of this patient, an interview with a close family member indicated the patient's illness included a major change in her sleep pattern, corroborating the reported autopsy diagnosis of sFI. Genetic tests identified no prion protein (PrP) gene mutation, but neuropathological examination and molecular study showed protease-resistant PrP (PrP<sup>res</sup>) in several brain regions and severe atrophy of the anterior-ventral and medial-dorsal thalamic nuclei similar to that described in FFI.</p> <p>Conclusions</p> <p>In patients with suspected prion disease, a characteristic change in sleep pattern can be an important clinical clue for identifying sFI or FFI; polysomnography (PSG), genetic analysis, and nuclear imaging may aid in diagnosis.</p

    Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis

    Get PDF
    Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies

    Characterization of MCF mammary epithelial cells overexpressing the Arylhydrocarbon receptor (AhR)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent reports indicate the existence of breast cancer cells expressing very high levels of the Arylhydrocarbon receptor (AhR), a ubiquitous intracellular receptor best known for mediating toxic action of dioxin and related pollutants. Positive correlation between the degree of AhR overexpression and states of increasing transformation of mammary epithelial cells appears to occur in the absence of any exogenous AhR ligands. These observations have raised many questions such as why and how AhR is overexpressed in breast cancer and its physiological roles in the progression to advanced carcinogenic transformation. To address those questions, we hypothesized that AhR overexpression occurs in cells experiencing deficiencies in normally required estrogen receptor (ER) signaling, and the basic role of AhR in such cases is to guide the affected cells to develop orchestrated cellular changes aimed at substituting the normal functions of ER. At the same time, the AhR serves as the mediator of the cell survival program in the absence of ER signaling.</p> <p>Methods</p> <p>We subjected two lines of Michigan Cancer Foundation (MCF) mammary epithelial cells to 3 different types ER interacting agents for a number of passages and followed the changes in the expression of AhR mRNA. The resulting sublines were analyzed for phenotypical changes and unique molecular characteristics.</p> <p>Results</p> <p>MCF10AT1 cells continuously exposed to 17-beta-estradiol (E2) developed sub-lines that show AhR overexpression with the characteristic phenotype of increased proliferation, and distinct resistance to apoptosis. When these chemically selected cell lines were treated with a specific AhR antagonist, 3-methoxy-4-nitroflavone (MNF), both of the above abnormal cellular characteristics disappeared, indicating the pivotal role of AhR in expressing those cellular phenotypes. The most prominent molecular characteristics of these AhR overexpressing MCF cells were found to be overexpression of ErbB2 and COX-2. Furthermore, we could demonstrate that suppression of AhR functions through anti-AhR siRNA or MNF causes the recovery of ERalpha functions.</p> <p>Conclusion</p> <p>One of the main causes for AhR overexpression in these MCF breast cancer cells appears to be the loss of ERalpha functions. This phenomenon is likely to be based on the mutually antagonistic relationship between ER and AhR.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Analysis of the cytochrome c-dependent apoptosis apparatus in cells from human pancreatic carcinoma

    Get PDF
    Defects in the apoptotic system are likely to play a role in tumorigenesis. Pancreatic carcinoma cells are extremely resistant to apoptosis induction by chemotherapy suggesting that the apoptosis machinery is faulty. We investigated the integrity of the cytochrome c-dependent apoptotic apparatus in 10 human pancreatic carcinoma cell lines. Expression of Apaf-1, caspase-3, -6, -7, -8 and -9, Hsp-70 and XIAP was detected in all cell lines. The expression levels of Apaf-1 and caspase-8 were homogenous in all cell lines whereas differences in expression of other caspases were seen. In cytosolic fractions, all investigated caspases were processed in response to cytochrome c but the extent of processing varied between the cell lines. No stringent correlation between the amount of processing of caspase-9 and effector caspases was seen. Cytochrome c-induced effector caspase activity was quantitated by enzyme assay. Especially at low concentrations of added cytochrome c, this response varied greatly between the cell lines. These data demonstrate that the apoptotic system downstream of the mitochondria is qualitatively intact in pancreatic carcinoma. They further show that the response to cytochrome c can be quantitated in a cell-free system and that determinants other than mere expression of apoptotic molecules can regulate cytochrome c-induced apoptosis

    A Novel Checkpoint and RPA Inhibitory Pathway Regulated by Rif1

    Get PDF
    Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA–damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular “band-aid” for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA–dependent DNA–damage responses in eukaryotic cells
    corecore