257 research outputs found

    Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate

    Get PDF
    We review recent theoretical progress aimed at understanding the formation and the early stages of evolution of giant planets, low-mass stars and brown dwarfs. Calculations coupling giant planet formation, within a modern version of the core accretion model, and subsequent evolution yield consistent determinations of the planet structure and evolution. Because of the uncertainties in the initial conditions, however, it is not possible to say whether young planets are faint or bright compared with low-mass young brown dwarfs. We review the effects of irradiation and evaporation on the evolution of short period planets and argue that substantial mass loss may have occurred for these objects. Concerning star formation, geometrical effects in protostar core collapse are examined by comparing 1D and 3D calculations. Spherical collapse is shown to overestimate the core inner density and temperature and thus to yield incorrect initial conditions for PMS or young brown dwarf evolution. Accretion is also shown to occur over a very limited fraction of the protostar surface. Accretion affects the evolution of young brown dwarfs and yields more compact structures for a given mass and age, thus fainter luminosities. This can lead to severe misinterpretations of the mass and/or age of young accreting objects from their location in the HR diagram. We argue that newborn stars and brown dwarfs should appear rapidly over an extended area in the HR diagram, depending on their accretion history, rather than on a well defined birth line. Finally, we suggest that the distinction between planets and brown dwarfs be based on an observational diagnostic, reflecting the different formation mechanisms between these two distinct populations, rather than on an arbitrary, confusing definition.Comment: Invited Review, Protostars and Planets V (Hawai, October 2005

    A possible observational bias in the estimation of the virial parameter in virialized clumps

    Full text link
    The dynamics of massive clumps, the environment where massive stars originate, is still unclear. Many theories predict that these regions are in a state of near-virial equilibrium, or near energy equi-partition, while others predict that clumps are in a sub-virial state. Observationally, the majority of the massive clumps are in a sub-virial state with a clear anti-correlation between the virial parameter αvir\alpha_{vir} and the mass of the clumps McM_{c}, which suggests that the more massive objects are also the more gravitationally bound. Although this trend is observed at all scales, from massive clouds down to star-forming cores, theories do not predict it. In this work we show how, starting from virialized clumps, an observational bias is introduced in the specific case where the kinetic and the gravitational energies are estimated in different volumes within clumps and how it can contribute to the spurious αvirMc\alpha_{vir}-M_{c} anti-correlation in these data. As a result, the observed effective virial parameter α~eff<αvir\tilde{\alpha}_{eff}<\alpha_{vir}, and in some circumstances it might not be representative of the virial state of the observed clumps.Comment: A&A letter, accepte

    Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence

    Get PDF
    Hydrodynamic supersonic turbulence can only prevent local gravitational collapse if the turbulence is driven on scales smaller than the local Jeans lengths in the densest regions, a very severe requirement (Paper I). Magnetic fields have been suggested to support molecular clouds either magnetostatically or via magnetohydrodynamic (MHD) waves. Whereas the first mechanism would form sheet-like clouds, the second mechanism not only could exert a pressure onto the gas counteracting the gravitational forces, but could lead to a transfer of turbulent kinetic energy down to smaller spatial scales via MHD wave interactions. This turbulent magnetic cascade might provide sufficient energy at small scales to halt local collapse. We test this hypothesis with MHD simulations at resolutions up to 256^3 zones, done with ZEUS-3D. We first derive a resolution criterion for self-gravitating, magnetized gas: in order to prevent collapse of magnetostatically supported regions due to numerical diffusion, the minimum Jeans length must be resolved by four zones. Resolution of MHD waves increases this requirement to roughly six zones. We then find that magnetic fields cannot prevent local collapse unless they provide magnetostatic support. Weaker magnetic fields do somewhat delay collapse and cause it to occur more uniformly across the supported region in comparison to the hydrodynamical case. However, they still cannot prevent local collapse for much longer than a global free-fall time.Comment: 32 pages, 14 figures, accepted by Ap

    Dynamic star formation in the massive DR21 filament

    Full text link
    The formation of massive stars is a highly complex process in which it is not clear whether the star-forming gas is in global gravitational collapse or in an equilibrium state, supported by turbulence. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, the filament containing the well-known sources DR21 and DR21(OH), we expect to find observational signatures that allow to discriminate between the two views. We use molecular line data from our 13CO 1-0, CS 2-1, and N2H+ 1-0 survey of the Cygnus X region obtained with the FCRAO and high-angular resolution observations of CO, CS, HCO+, N2H+, and H2CO, obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of highest column-density, i.e. dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO+ and 12CO are observed along and across the whole DR21 filament. From modelling the observed spectra, we obtain a typical infall speed of 0.6 km/s and mass accretion rates of the order of a few 10^-3 Msun/yr for the two main clumps constituting the filament. These massive (4900 and 3300 Msun) clumps are both gravitationally contracting. All observed kinematic features in the DR21 filament can be explained if it is formed by the convergence of flows at large scales and is now in a state of global gravitational collapse. Whether this convergence of flows originated from self-gravity at larger scales or from other processes can not be settled with the present study. The observed velocity field and velocity dispersion are consistent with results from (magneto)-hydrodynamic simulations where the cores lie at the stagnation points of convergent turbulent flows.Comment: Astronomy and Astrophysics, in pres

    The production of magnetically dominated star-forming regions

    Get PDF
    We consider the dynamical evolution of an interstellar cloud that is initially in thermal equilibrium in the warm phase and is then subjected to a sudden increase in the pressure of its surroundings. We find that if the initial plasma β of the cloud is of order unity, then there is a considerable period during which the material in the cloud both has a small β and is in the thermally unstable temperature range. These conditions are not only consistent with observations of star-forming regions but also ideally suited to the production of density inhomogeneities by magnetohydrodynamic waves. The end result should be a cloud whose size and average density are typical of Giant Molecular Clouds (GMCs) and that contains denser regions whose densities are in the range inferred for the translucent clumps in GMCs

    Influence of Alfven waves on the Thermal Instability in the Interstellar Medium

    Get PDF
    The effect of Alfv\'en waves on the thermal instability of the Interstellar Medium (ISM) is investigated both analytically and numerically. A stability analysis of a finite amplitude circularly polarized Alfv\'en wave propagating parallel to an ambient magnetic field in a thermally unstable gas at thermal equilibrium is performed, leading to a dispersion relation which depends on 3 parameters, namely the square ratio of the sonic and Alfv\'en velocities (β\beta), the wave amplitude and the ratio between the wave temporal period and the cooling time. Depending on the values of these 3 parameters, the Alfv\'en waves can stabilize the large-scale perturbations, destabilize those whose wavelength is a few times the Alfv\'en wavelength λAW\lambda_{AW} or leave the growth rate of the short scales unchanged. In order to investigate the non-linear regime, two different numerical experiments are performed in a slab geometry. (TBC)Comment: accepted for publication in A&

    Fragmentation and mass segregation in the massive dense cores of Cygnus X

    Full text link
    We present Plateau de Bure interferometer observations obtained in continuum at 1.3 and 3.5 mm towards the six most massive and young (IR-quiet) dense cores in Cygnus X. Located at only 1.7 kpc, the Cygnus X region offers the opportunity of reaching small enough scales (of the order of 1700 AU at 1.3 mm) to separate individual collapsing objects. The cores are sub-fragmented with a total of 23 fragments inside 5 cores. Only the most compact core, CygX-N63, could actually be a single massive protostar with an envelope mass as large as 60 Msun. The fragments in the other cores have sizes and separations similar to low-mass pre-stellar and proto-stellar condensations in nearby protoclusters, and are probably of the same nature. A total of 9 out of these 23 protostellar objects are found to be probable precursors of OB stars with envelope masses ranging from 6 to 23 Msun. The level of fragmentation is globally higher than in the turbulence regulated, monolithic collapse scenario, but is not as high as expected in a pure gravo-turbulent scenario where the distribution of mass is dominated by low-mass protostars/stars. Here, the fractions of the total core masses in the high-mass fragments are reaching values as high as 28, 44, and 100 % in CygX-N12, CygX-N53, and CygX-N63, respectively, much higher than what an IMF-like mass distribution would predict. The increase of the fragmentation efficiency as a function of density in the cores is proposed to be due to the increasing importance of self-gravity leading to gravitational collapse at the scale of the dense cores. At the same time, the cores tend to fragment into a few massive protostars within their central regions. We are therefore probably witnessing here the primordial mass segregation of clusters in formation.Comment: 14 pages, 16 figures, submitted for publication in A&

    The W43-MM1 mini-starburst ridge, a test for star formation efficiency models

    Get PDF
    Context: Star formation efficiency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims: We investigate the effects of gas density on the SFE through measurements of the core formation efficiency (CFE). With a total mass of 2×104\sim2\times10^4 M_\odot, the W43-MM1 ridge is one of the most convincing candidate precursor of starburst clusters and thus one of the best place to investigate star formation. Methods: We used high-angular resolution maps obtained at 3 mm and 1 mm within W43-MM1 with the IRAM Plateau de Bure Interferometer to reveal a cluster of 11 massive dense cores (MDCs), and, one of the most massive protostellar cores known. An Herschel column density image provided the mass distribution of the cloud gas. We then measured the 'instantaneous' CFE and estimated the SFE and the star formation rate (SFR) within subregions of the W43-MM1 ridge. Results: The high SFE found in the ridge (\sim6% enclosed in \sim8 pc3^3) confirms its ability to form a starburst cluster. There is however a clear lack of dense cores in the northern part of the ridge, which may be currently assembling. The CFE and the SFE are observed to increase with volume gas density while the SFR steeply decreases with the virial parameter, αvir\alpha_{vir}. Statistical models of the SFR may well describe the outskirts of the W43-MM1 ridge but struggle to reproduce its inner part, which corresponds to measurements at low αvir\alpha_{vir}. It may be that ridges do not follow the log-normal density distribution, Larson relations, and stationary conditions forced in the statistical SFR models.Comment: 13 pages, 7 figures. Accepted by A&
    corecore