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ABSTRACT
Hydrodynamic supersonic turbulence can only prevent local gravitational collapse if the turbulence is

driven on scales smaller than the local Jeans lengths in the densest regions, which is a very severe
requirement (see Paper I). Magnetic Ðelds have been suggested to support molecular clouds either mag-
netostatically or via magnetohydrodynamic (MHD) waves. Whereas the Ðrst mechanism would form
sheetlike clouds, the second mechanism not only could exert a pressure onto the gas counteracting the
gravitational forces but could lead to a transfer of turbulent kinetic energy down to smaller spatial scales
via MHD wave interactions. This turbulent magnetic cascade might provide sufficient energy at small
scales to halt local collapse. We test this hypothesis with MHD simulations at resolutions up to 2563
zones done with ZEUS-3D. We Ðrst derive a resolution criterion for self-gravitating, magnetized gas : to
prevent collapse of magnetostatically supported regions caused by numerical di†usion, the minimum
Jeans length must be resolved by four zones. Resolution of MHD waves increases this requirement to
roughly six zones. We then Ðnd that magnetic Ðelds cannot prevent local collapse unless they provide
magnetostatic support. Weaker magnetic Ðelds do somewhat delay collapse and cause it to occur more
uniformly across the supported region in comparison to the hydrodynamical case. However, they still
cannot prevent local collapse for much longer than a global free-fall time.
Subject headings : ISM: clouds È ISM: kinematics and dynamics È ISM: magnetic Ðelds È

turbulence È MHD

1. INTRODUCTION

All star formation takes place in molecular clouds.
However, the star formation rate in these clouds is sur-
prisingly low. From the Jeans argument, one would expect
that they should collapse within their free-fall time
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where is the mean mass density of the cloud, G the gravi-o6
tational constant, and the number density, withn \o6 /k

A catastrophic collapse of a giant moleculark \ 2.36mH.
cloud on this timescale would yield a single starburst event.
However, molecular clouds have classically been thought to
survive without global collapse for much longer than their
free-fall time (Blitz & Shu 1980). Moreover, stars are nottffusually observed in nearby star-forming regions to form in
such a catastrophic collapse. Instead, they form in localized
regions dispersed through an apparently stable cloud.

Observations of spectral line widths in molecular clouds
show that the gas moves at speeds exceeding the thermal
velocities by up to an order of magnitude (Williams, Blitz, &
McKee 2000). These supersonic motions seem not to be
ordered, so that turbulent support models have often been
suggested, with the turbulence giving rise to an e†ectively
isotropic turbulent pressure counteracting the gravitational
forces.

However, such models have two problems. First, simula-
tions of supersonic, compressible turbulence show that it
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typically decays in a time less than the cloudÏs free-fall time
(Gammie & Ostriker 1996 ; Mac Low et al. 1998 ; MactffLow 1999). So, in order to be really able to support the

cloud, the turbulence would have to be constantly driven.
Second, although hydrodynamical turbulence can prevent
global collapse, it can never completely prevent local col-
lapse except with unrealistically short driving length scale

(Klessen, Heitsch, & Mac Low 2000 ; hereafter Paper I).j
DThe efficiency of local collapse depends on the wavelength

and on the strength of the driving source. Long-wavelength
driving or no driving at all results in efficient, coherent star
formation, with most collapsed regions forming near each
other (Klessen & Burkert 2000). Strong, short-wavelength
driving, on the other hand, results in inefficient, incoherent
star formation, with isolated collapsed regions randomly
distributed throughout the cloud.

The model of molecular clouds being supported by turb-
ulence has been widely discussed and investigated, as
reviewed in Paper I and et al. (2000).Va� zquez-Semadeni
Recently, Ballesteros-Paredes et al. (1999), Hennebelle &

(1999), and Elmegreen (2000) have suggested thatPe� rault
molecular clouds might not have to be supported for these
long timescales at all but might be transient features caused
by colliding Ñows in the interstellar medium. This would
solve very naturally not only the problem of cloud support
but also, according to Ballesteros-Paredes et al. (1999), the
pronounced lack of 5È10 million year old postÈT-Tauri
stars directly associated with star-forming molecular
clouds.

Magnetic Ðelds might alter the dynamical state of a
molecular cloud sufficiently to prevent gravitationally
unstable regions from collapsing (McKee 1999). They have
been hypothesized to support molecular clouds either mag-
netostatically or dynamically through MHD waves.

Mouschovias & Spitzer (1976) derived an expression for
the critical mass-to-Ñux ratio in the center of a cloud for
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magnetostatic support. Assuming ideal MHD, a self-
gravitating cloud of mass M permeated by a uniform Ñux '
is stable if the mass-to-Ñux ratio
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with depending on the geometry and the Ðeld andc'density distribution of the cloud. A cloud is termed sub-
critical if it is magnetostatically stable and supercritical if it
is not. Mouschovias & Spitzer (1976) determined that c' \
0.13 for their spherical cloud. Assuming a constant mass-to-
Ñux ratio in a region results in (Nakanoc' \ 1/(2n)^ 0.16
& Nakamura 1978). Without any other mechanism of
support, such as turbulence acting along the Ðeld lines, a
magnetostatically supported cloud will collapse to a sheet
that then will be supported against further collapse. Fiege &
Pudritz (1999) discussed a sophisticated version of this mag-
netostatic support mechanism, in which poloidal and toroi-
dal Ðelds aligned in the right conÐguration could prevent a
cloud Ðlament from fragmenting and collapsing.

Investigation of the second alternative, support by MHD
waves, concentrates mostly on the e†ect of waves, asAlfve� n
they (1) are not as subject to damping as magnetosonic
waves and (2) can exert a force along the mean Ðeld, as
shown by Dewar (1970) and Shu, Adams, & Lizano (1987).
This is because waves are transverse waves, so theyAlfve� n
cause perturbations dB perpendicular to the mean magnetic
Ðeld B. McKee & Zweibel (1995) argue that wavesAlfve� n
can even lead to an isotropic pressure, assuming that the
waves are neither damped nor driven. However, to support
a region against self-gravity, the waves would have to pro-
pagate outwardly rather than inwardly, which would only
further compress the cloud. Thus, as Shu et al. (1987)
comment, this mechanism requires a negative radial gra-
dient in wave sources in the cloud.

Most molecular clouds show evidence of magnetic Ðelds.
However, the discussion of their relative strength is lively.
Crutcher (1999) summarizes all 27 available Zeeman mea-
surements of magnetic Ðeld strengths in molecular clouds.
He concludes that (1) static magnetic Ðelds are not strong
enough to support the observed clouds alone, with typical
ratios of the mass M to the critical mass for the observed
magnetic Ðeld (2) the ratio of thermal to mag-M/Mcr B 2 ;
netic pressure (3) internal motions areb \Pth/PmagB 0.04 ;
supersonic, with a velocity dispersion but approx-p

v
? c

simately equal to the speed, and (4) that theAlfve� n p
v
B vA ;

kinetic and magnetic energies are roughly equal, which he
interprets as suggesting that static magnetic Ðelds and
MHD waves are equally important in cloud energetics.
However, McKee (1999) remarks that CrutcherÏs data do
not address the strength of the Ðeld on large scales
(threading an entire GMC) and that the data deal with
dense regions in the clouds, so that ambipolar di†usion
already might have altered the mass-to-Ñux ratio observed.
Moreover, CrutcherÏs fourth conclusion about the role of
static Ðelds and MHD waves is based on the assumption
that the kinetic energy stems mainly from MHD waves.

Nakano (1998) made two further arguments against mag-
netostatic support of cloud cores. First, magnetically sub-
critical condensations cannot have column densities much
higher than their surroundings. However, observed cloud
cores have column densities signiÐcantly higher than the
mean column density of the cloud, indicating that they are

not magnetostatically supported. Second, if the cloud cores
were magnetically supported and subcritical, it would be
difficult to maintain the observed nonthermal velocity dis-
persions for a signiÐcant fraction of their lifetime. Mac Low
(1999) conÐrmed this by numerically determining the dissi-
pation rate of supersonic, magnetohydrodynamic turbu-
lence. He concludes that the typical decay time constant is
far less than the free-fall time of the cloud.

Polarization measurements might give us a clue whether
the Ðelds are well ordered or in a turbulent state. However,
up to now, most measurements refer to the highest density
regions, thus giving information about the Ðelds in small-
scale structures but not about scales of the whole cloud.
Hildebrand et al. (1999) present polarization measurements
of cloud cores and envelopes. They Ðnd polarization
degrees of at most 10%. More recent observations of the
molecular cloud Ðlament OMC-3 by Matthews & Wilson
(2000) suggest that the magnetic Ðeld is well ordered per-
pendicularly to the Ðlament but with a mean polarization
degree of only 4.2%.

Passot, & Pouquet (1996) performedVa� zquez-Semadeni,
three-dimensional simulations including self-gravity and
MHD with a resolution of 643. They found that hydrody-
namical and supercritically magnetized turbulence can lead
to gravitationally bound structures. Gammie & Ostriker
(1996) did simulations in dimensions, while more re-123cently 2.5 dimensional models were presented by Ostriker,
Gammie, & Stone (1999). Mac Low et al. (1998), Stone,
Ostriker, & Gammie (1998), Padoan & Nordlund (1999),
and Mac Low (1999) studied decaying magnetized turbu-
lence and found short decay rates with as well as without
magnetic Ðelds.

We present the Ðrst high-resolution (2563 zones) simula-
tions of magnetized, self-gravitating, driven, supersonic
turbulence to test the hypothesis that magnetic Ðelds can
contribute to the support of molecular clouds. The follow-
ing section describes the technique and parameters used for
the simulations. Section 3 discusses requirements regarding
the resolution needed for simulations of self-gravitating
magnetized turbulence. In ° 4, we present the results, and we
summarize our conclusions in ° 5.

2. TECHNIQUE AND MODELS

2.1. Technique
For our computations, we use ZEUS-3D, a well-tested,

Eulerian, Ðnite-di†erence code (Stone & Norman 1992a,
1992b ; Clarke 1994). It uses second-order advection and
resolves shocks employing a von Neumann artiÐcial vis-
cosity. Self-gravity is implemented via an FFT-solver for
Cartesian coordinates (Burkert & Bodenheimer 1993). The
magnetic forces are calculated via the constrained transport
method (Evans & Hawley 1988) to ensure +ÉB \ 0 to
machine accuracy. In order to stably propagate shear

waves, ZEUS uses the method of characteristicsAlfve� n
(Stone & Norman 1992b ; Hawley & Stone 1995). This
method evolves the propagation of waves as anAlfve� n
intermediate step to compute time-advanced quantities for
the evolution of the Ðeld components themselves to ensure
that signals do not propagate upwind unphysically.

We use a three-dimensional, periodic, uniform, Cartesian
grid for the models described here. This gives us equal
resolution in all regions and allows us to resolve shocks and
magnetic Ðeld structures well everywhere. On the other
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hand, collapsing regions cannot be followed to scales less
than a few grid zones.

We do not include ambipolar di†usion in this work,
although numerical di†usion acts on scales in our simula-
tions that, when translated to astronomical scales with
typical parameters, correspond to the scales on which ambi-
polar di†usion begins to dissipate power (see Paper I).
Moreover, we do not use a physical resistivity, relying on
numerical dissipation at grid scale caused by averaging
quantities over zones. The limited resolution in high-density
regions can lead to excessive numerical di†usion of mass
through the magnetic Ðelds that must be accounted for
when analyzing these or similar computations. In ° 3 we
derive the appropriate resolution criterion.

2.2. Models and Parameters
We employ two sets of parameters. The Ðrst one is the

same as in Paper I and allows us to compare its results to
the ones of this work. The second parameter set enables us
to determine the numerical reliability of these results. All
parameters are given in normalized units, where physical
constants are scaled to unity and where we consider gas
cubes with mass M 4 1 and side length [[1.0, 1.0]. The
system can be scaled to physical units using the Jeans mass

and length scale In Paper I we adopt a normalizedM
J

j
J
.

sound speed of which yields andc
s
\ 0.1, M

J
\ 0.0156

such that the computed box contains M \ 64j
J
\ 0.5 M

Jand is L \ 4 in size. Our second parameter set is basedj
Jon a sound speed of which, in turn, gives a 10c

s
\ 0.213,

times larger Jeans mass and yieldsM
J
\ 0.156 j

J
\ 1.068,

so that follows M \ 6.4 and L \ 1.873M
J

j
J
.

We use the same driving mechanism described in Mac
Low (1999). At each time step, a Ðxed velocity pattern is

added to the actual velocity Ðeld thus, so that the input
energy rate is constant. The driving Ðeld pattern is derived
from a Gaussian random Ðeld with a given spectrum. This
allows us to drive the cloud on selected spatial scales. The
rms Mach number for the Ðrst parameter set is Mrms \ 10,
for the second one it isMrms\ 5.

The MHD simulations start with a uniform magnetic
Ðeld in the z-direction. As soon as the cube has evolved into
a fully turbulent state, gravity is switched on. The critical
Ðeld value according to equation (2) is in codeBcr \ 1.56
units. The initial Ðeld strength varies between B\ 0.19È
1.77, corresponding to covering the sub-M/Mcr \ 0.4È8.3,
and supercritical range. The ratio b \Pth/Pmag\ 0.01È4.04.
For an overview of the parameters used, see Table 1. There
are four series of models : D (pure hydrodynamics, same
runs as in Paper I) ; E (MHD models with the same param-
eter set as the hydro models) ; F (magnetostatic models for
numerical tests) ; and G (MHD models with a reduced
number of Jeans masses). The second letter in the model
names stands for the resolution (low, 643 ; intermediate,
1283 ; or high, 2563), followed by a digit denoting the driving
scale. For the MHD models, a third letter gives the relative
Ðeld strength (low, intermediate, moderate, strong).

The dynamical behavior of isothermal, self-gravitating
gas depends only on the ratio between potential and kinetic
energy. Therefore, we can use the same scaling prescriptions
as in Paper I, deÐning the physical timescale by the free-fall
time (eq. [1]), the length scale by the initial Jeans length
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TABLE 1

PARAMETERS OF MODELS USED

Name Resolution kdrv M
J
turb b bturb M/Mcr t5†

Dh1 . . . . . . . 2563 1È2 15 O O O 0.4
Dh3 . . . . . . . 2563 7È8 15 O O O 0.7
Eh1w . . . . . . 2563 1È2 15 0.9 87.2 8.3 1.4
Ei1w . . . . . . . 1283 1È2 15 0.9 87.2 8.3 1.3
El1w . . . . . . . 643 1È2 15 0.9 87.2 8.3 0.6
Eh1i . . . . . . . 2563 1È2 15 0.04 3.9 1.8 0.8
Ei1i . . . . . . . . 1283 1È2 15 0.04 3.9 1.8 0.4
El1i . . . . . . . . 643 1È2 15 0.04 3.9 1.8 . . .
Ei1s . . . . . . . 1283 1È2 15 0.01 1.0 0.8 1.5
El1s . . . . . . . 643 1È2 15 0.01 1.0 0.8 1.0
Ei0s . . . . . . . 1283 0 . . . 0.01 . . . 0.8 . . .
El0s . . . . . . . 643 0 . . . 0.01 . . . 0.8 . . .
Fl0w . . . . . . 643 0 . . . 3 ] 10~3[0.14 . . . 1.10 . . .
Fl0i . . . . . . . 643 0 . . . 2 ] 10~3[0.09 . . . 0.88 . . .
Fl0m . . . . . . 643 0 . . . 1 ] 10~3[0.04 . . . 0.59 . . .
Fl0s . . . . . . 643 0 . . . 3 ] 10~4[0.02 . . . 0.44 . . .
Gi1 . . . . . . . . 1283 1È2 19 O O O 1.2
Gi1w . . . . . . 1283 1È2 19 4.04 100.0 8.3 2.1
Gi1i . . . . . . . . 1283 1È2 19 0.23 5.9 2.0 1.0
Gi1m . . . . . . 1283 1È2 19 0.07 1.8 1.1 (3.5)
Gi1s . . . . . . . 1283 1È2 19 0.05 1.1 0.8 . . .

NOTE.È gives the turbulent Jeans mass,M
J
turb \o1@2(n/G)3@2(c

s
2] Sv2T/3)3@2 b \ Pth/Pmag \

and denotes the time at which 5% of the total mass has been8nc
s
2 o/B2 bturb \Pturb/Pmag . t5†accreted onto cores. Times have been normalized to the global free-fall time. gives the ratioM/Mcrof cloud mass to critical mass according to eq. (2). Models El1i and El1s have been computed three

times with varying random seeds to check the inÑuence of the velocity Ðeld on the results. They are
not listed explicitly. Models El0s, Ei0s, and F are nondriven runs, used for the analysis of
numerical di†usion. Model Gi1s collapses so slowly that it only reached afterM

*
\ 3% t \ 3.5tff.
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and the mass scale by the Jeans mass
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where and are expressed in code units. We includejü
J
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with again in code units.BŒ

3. NUMERICAL RESOLUTION CRITERION

We must consider the resolution required to accurately
follow gravitational collapse. To follow fragmentation in a
grid-based, hydrodynamical simulation of self-gravitating
gas, the criterion given by Truelove et al. (1997) holds. They
studied fragmentation in self-gravitating, collapsing regions
and found that the mass contained in one grid zone must
remain signiÐcantly smaller than the local Jeans mass
throughout the computation to accurately follow the frag-
mentation. Bate & Burkert (1997) found a similar criterion
for particle methods. Applying it strictly would limit our
simulations to the very Ðrst stages of collapse. We therefore
only apply this criterion to the resolution of initial collapse.
Thereafter, we study only the gross properties of collapsed
cores, such as mass and location, but not their under-
resolved internal details.

The Truelove analysis does not include magnetic Ðelds,
which must also be sufficiently resolved to determine
whether initial collapse occurs. Numerical di†usion can
reduce the support provided by a static or dynamic mag-
netic Ðeld against gravitational collapse. Increasing the
numerical resolution decreases the scale at which numerical
di†usion acts. In this section we attempt to determine the
resolution necessary to adequately resolve magnetic
support against collapse in the presence of supersonic turb-
ulence. Two regimes of Ðeld strength concern us. For
strong, subcritical Ðelds, the resolution should ensure that
numerical di†usion remains unimportant even for the
dense, shocked regions (° 3.1). For weaker, supercritical
Ðelds, the resolution should enable us to evolve MHD
waves within the shocked regions (° 3.2).

3.1. Numerical Di†usion in Magnetostatic ConÐgurations
We begin by considering magnetostatic support. Figure 1

demonstrates that numerical di†usion can dominate the
behavior in this case. The left-hand panel displays the peak
density and magnetic Ðeld amplitude for the low-omax Bmaxand intermediate-resolution undriven models El0s and Ei0s,
while the right-hand panel contains the same quantities for
the driven, but otherwise identical, models El1s and Ei1s
(see Table 2). All these models have initial magnetic Ðeld
strength sufficient to support the region, with M/Mcr \ 0.8.

Starting with a sinusoidal density perturbation in the
undriven case, both the driven and undriven models Ðrst
collapse into sheet structures. The dotted lines in the density
plots show the density corresponding to having all theosheetmass in the box in a layer one zone thick. In a volume Ðlled
with otherwise unperturbed gas of initially uniform density,
reaching peak densities higher than this thresholdomaxmeans that numerical di†usion across Ðeld lines must have

FIG. 1.ÈPeak densities and maximum magnetic Ðeld strengths for
strong Ðeld driven (El1s and Ei1s), and undriven (El0s and(M/Mcr \ 0.8),
Ei0s) runs. The dotted lines (upper N\ 1283, lower N\ 643) denote the
sheet densities, i.e., the densities corresponding to all mass concentrated in
a layer of one grid zoneÏs height. Gravity is turned on at t \ 0.0 with t in
units of the global free-fall timescale The time interval at t \ 0.0 istff.necessary for the driven models to reach a state of fully developed turbu-
lence. In the lower panels, the thin lines denote the magnetic Ðeld strength
required to support a region of density according to eq. (2).omax

begun, as can be seen in the top left-hand panel of Figure 1.
However, in driven, isothermal, supersonic turbulence, the
peak densities in shocked regions scale with the Mach
number M as Thus, can reach values ordersopkPM2. opkof magnitude higher than the mean density, easily exceeding

even in the absence of di†usion.osheetThe magnetic Ðeld provides an alternate diagnostic. In
the absence of numerical di†usion, mass should be tied to
the Ðeld lines running vertically through the cube, so the
mass to Ñux ratio along any given Ðeld line should not
change. In the lower panels, we plot the magnetic Ðeld
strength required to support a region of densityBsup(o) omax(thin lines) according to equation (2). The magnetic Ðeld
starts out signiÐcantly stronger than as the mass isBsup,insufficient for collapse to occur. If grows more slowlyBmaxthan then density must be di†using across Ðeld lines. IfBsup,the two values cross, then numerical di†usion has allowed
collapse to occur unphysically. This happens in the
undriven models at while in the driven modelst \ 4.7tff,

TABLE 2

PEAK JEANS LENGTHS FOR ALL TURBULENT MODELS

Model c
s

n
J

M j
J
pk 643 1283 2563

D/E . . . . . . 0.10 64 10 0.05 1.6 3.2 6.4
G . . . . . . . . . 0.213 6.4 5 0.11 3.4 6.8 13.6

NOTE.ÈPeak Jeans lengths for all turbulent models, where isj
J
pk

determined via the peak density The second column listsopk\M2o0.the sound speed, followed by the Mach number, M, and the numberc
s
,

of thermal Jeans masses in the box, The last three columns containn
J
.

the Jeans lengths in zones for the resolution denoted in the top row.
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with their greater density contrasts, collapse already occurs
at We conclude that in these low- andt \ 0.5tff.intermediate-resolution models, the resolution is not suffi-
ciently high for the magnetic Ðeld to follow the turbulence,
especially in shocked regions.

We can use this example to derive a criterion for the
resolution of a magnetostatically supported sheet. We can
also conÐrm that we are using the correct numerical con-
stant in the mass-to-Ñux criterion given by equation (2). We
did a suite of models F (see Table 1) varying the sound
speed and the mass in the cube while holding the magnetic
Ðeld strength constant, thus varying and the numberM/Mcrof zones in a Jeans length For we certainlyj

J
. j

J
\ 1.0,

cannot expect to get reliable results, as this Jeans length
does not even fulÐll the hydrodynamic criterion of Truelove
et al. (1997). In Figure 2 we present the results. We Ðnd
unphysical collapse occurring for physically supported
regions until zones. We also Ðnd that at thisj

J
º 4.0

resolution, a model with collapses (thin line inM/Mcr \ 1.1
Ðrst panel) while a model with does not col-M/Mcr\ 0.88
lapse, conÐrming equation (2). We conclude that for a self-
gravitating magnetostatic sheet to be well resolved, its Jeans
length must exceed four zones.

3.2. MHD Waves in High-Density Regions
As we want to investigate whether MHD turbulence can

prevent gravitationally unstable regions from collapsing, we
have to be sure to resolve the MHD waves, which are the
main agent in this mechanism. The same argument holds as
for the criterion to prevent local collapse in the pure hydro

case (Paper I). If the wavelength of the turbulent pertur-
bation is smaller than the local Jeans length stabilizationj

J
,

should be possible, at least in principle. To sample a sinus-
oidal wave on a grid, we need at least four zones. Polygonal
interpolation of a sine wave with evenly spaced supports
would then yield an error of B21%. This decreases to B9%
with six zones and B5% using eight zones. We choose to
set the minimum permitted Jeans length to six zones, admit-
tedly somewhat arbitrarily.

In Table 2, we list the local Jeans lengths for all model
types and their resolution. Models of type E start to be
resolved at a resolution of N \ 2563, whereas the ones of
type G can already be regarded as resolved at N \ 1283.

4. RESULTS

In the previous section, we considered under what cir-
cumstances numerical e†ects could allow unphysical gravi-
tational collapse. In this section, we consider adequately
resolved models in order to determine whether magnetized
turbulence can prevent the collapse of regions that are not
magnetostatically supported. We begin by demonstrating
that supersonic turbulence does not cause a magneto-
statically supported region to collapse and then demon-
strate that in the absence of magnetostatic support, MHD
waves cannot completely prevent collapse, although they
can retard it.

4.1. Magnetostatic Support
In a subcritical region with the cloud isM \ Mcr,expected to collapse to a sheet, which in turn should be

FIG. 2.ÈPeak densities for all test models of type F. is the Jeans length in units of grid zones, when all the mass is collected in a sheet of a single zoneÏsj
Jheight. The horizontal dotted line denotes the density reached if all mass is collected in a sheet of a single zoneÏs height. Note that for zones, we getj

J
\ 4.0

collapse in the supercritical case but not in the subcritical one. Thus, we verify the mass-to-Ñux criterion (eq. [2]).(M/Mcr \ 1.1)
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FIG. 3.ÈTwo-dimensional slice of increased Jeans mass model Gi1s
with velocity Ðeld vectors (upper panel ) and magnetic Ðeld vectors (lower
panel ) displaying the whole computational domain. The initial magnetic
Ðeld is oriented along the z-direction, i.e., vertically in all plots presented.
Driving happens at k \ 1È2. The Ðeld is strong enough in this case not
only to prevent the cloud from collapsing perpendicular to the Ðeld lines
but even to suppress the turbulent motions in the cloud. The turbulence
only scarcely a†ects the mean Ðeld. The picture is taken at t \ 5.5tff.

stable. Figure 3 shows the corresponding model Gi1s. These
runs have been computed with a lower Mach number
M\ 5.0 in order to demonstrate the behavior of a magne-
tostatically supported cloud. The initially uniform magnetic

Ðeld runs parallel to the z-axis. The Ðeld is strong enough to
force signiÐcant anisotropy in the Ñow, although the dense
sheets that form do not always lie perpendicular to the Ðeld
lines as the driving can shift the sheets along the Ðeld lines
without changing the mass-to-Ñux ratio. The sheets do not
collapse further because the shock waves cannot sweep gas
across Ðeld lines and the cloud is initially supported magne-
tostatically.

Figure 4 demonstrates that this result is reasonably well
resolved numerically. As in Figure 1, we show peak den-
sities and magnetic Ðeld strength for two models that di†er
only in their sound speeds and thus by the number of zones
in a Jeans wavelength Whereas model Ei1s, withj

J
. j

J
\

3.2 zones does collapse, although it should be supported,
model Gi1s, with zones, behaves as expected physi-j

J
\ 6.8

cally, just as our resolution criterion predicts. Note that the
actual Ðeld strength in model Gi1s always exceeds theBsup,Ðeld strength necessary to support the region.

4.2. MHD Wave Support
A supercritical cloud with is not magneto-M [ Mcrstatically supported and could be stabilized only by MHD

wave pressure, assuming ideal MHD. In this section we
show that this appears to be insufficient to completely
prevent gravitational collapse, although it can slow the
process down.

4.2.1. Morphology

In the upper panels of Figure 5 we compare the morphol-
ogy of hydrodynamical (Dh1), weakly magnetized (Eh1w),
and strongly magnetized (Eh1i) supercritical models at a
resolution of 2563 zones. The Ðgure presents two-

FIG. 4.ÈPeak densities and maximum magnetic Ðeld strengths for
strong Ðeld model Ei1s (solid line) and model Gi1s (dashed line). The dotted
line denotes the sheet density, i.e., the density corresponding to all mass
concentrated in a layer of one grid zoneÏs height. Gravity is turned on at
t \ 0.0 with t in units of the global free-fall time. In the lower panel, the
thin lines denote the magnetic Ðeld strength required to support a region of
density according to eq. [2]. Whereas model Ei1s shows unphysical,omaxnumerical collapse, model Gi1s is well resolved.
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FIG. 5.ÈTwo-dimensional slices of the high-resolution models Dh1, Eh1w, and Eh1i and the corresponding models at intermediate resolution Di1, Ei1w,
and Ei1i, displaying the whole computational domain. Slices are taken at the location of the zone with the highest density at the time when 10% of the total
mass has been accreted onto cores. The plot is centered on this zone. Arrows denote velocities in the plane. The length of the largest arrows corresponds to a
velocity of vD 2.0. Gray scale stands for density, where highest density regions are darkest. All slices are scaled equally, using the same scale as Fig. 3.
Driving, as in Fig. 3, happens at k \ 1È2.

dimensional slices through the three-dimensional simula-
tion volume centered on the locations of the most massive
clumps. To compare the models at similar stages of their
evolution, we took the snapshots at a time when roughly
10% of the total mass had been accreted onto collapsing
clumps. All three runs show well-developed turbulence,
rareÐed regions, shocked regions, and at least one clump.
However, model Eh1w, with seems to containM/Mcr\ 8.3,
more power on small scales than the pure hydro run, model
Dh1 We discuss this more quantitatively(M/Mcr \O).
below. In model Eh1i, with the verticallyM/Mcr \ 1.8,
oriented mean Ðeld (in the plane of the Ðgure) starts produc-
ing some anisotropy. This model represents a morphologi-
cal transition from the pure hydrodynamical model Dh1
with completely randomly oriented motions to the magne-
tostatically supported model Gi1s with its ordered struc-
tures.

4.2.2. Resolution Study

We must address the question of whether our magneto-
dynamic simulations are indeed well resolved. The parame-
ters for models E yield a global Jeans length of j

J
B 0.5,

corresponding to a local, post-shock Jeans length of j
J
B

0.05 for isothermal shocks with Mach number MB 10 (see
Table 2). At N \ 1283 zones, this results in a local Jeans
length of only 3.2 zones, but at 2563 the local Jeans length is
6.4 zones, satisfying our resolution criterion. Instead of
increasing the resolution, we increased the Jeans length in
the models G discussed below in ° 4.2.4 by increasing the

sound speed. In these models, we used a global Jeans length
of corresponding to a local Jeans length of 6.8j

J
B 1.1,

zones at N \ 1283.
Figure 5 compares high-resolution 2563 zone models

with the corresponding lower resolution 1283 zone models
in the same dynamical state when 10% of the mass has been
accreted onto cores. The lower resolution makes itself felt in
broader shocks in all cases, so that the peak densities are
lower than in the high-resolution runs. In the MHD models,
decreasing the resolution also leads to thicker collapsed
sheets. Thus, unstable regions form at later times in both the
MHD and hydrodynamical cases, as can be seen in Figure
6. There, we show the core mass accretion history for three
weakly magnetized models varying only in their resolution
El1w (643), Ei1w (1283), and Eh1w (2563) (lower panel) and
the corresponding hydrodynamical models (Dl1, Di1,
Dh1Èupper panel). Cores were determined using the modi-
Ðed CLUMPFIND algorithm of Williams, De Geus, &
Blitz (1994) as described in Paper I.

Collapse occurs in both cases at all resolutions. However,
increasing the resolution makes itself felt in di†erent ways in
hydrodynamical and MHD models. In the hydrodynamical
case, higher resolution results in thinner shocks and thus
higher peak densities. These higher density peaks form
cores with deeper potential wells that accrete more mass
and are more stable against disruption. If we increase the
resolution in the MHD models, on the other hand, we can
better follow short-wavelength MHD waves, which appear
to be able to delay collapse although not to prevent it.



No. 1, 2001 TURBULENT MOLECULAR CLOUDS. II. 287

FIG. 6.ÈComparison of the mass accretion behavior for runs driven at
k \ 1È2 with varying resolution. Pure hydro runs are shown in the upper
panel (models Dl1 [dotted], Di1 [dashed], and Dh1 [solid]), and MHD
runs are shown in the lower panel (models El1 [dotted], Ei1 [dashed], and
Eh1 [solid]). denotes the sum of masses found in all cores determinedM

*by the modiÐed CLUMPFIND (Williams et al. 1994 ; see also Paper I).
Times are given in units of free-fall time as deÐned in eq. (1). Although the
collapse rate varies, we get collapse in all cases.

The turbulent formation of gravitationally condensed
regions via shock interactions is a highly stochastic process.
As in Paper I, we demonstrate this by choosing di†erent
random realizations of the driving velocity Ðeld with the
same characteristic wavelengths. Figure 7 shows the core
mass accretion history for a pure hydrodynamical model set
and a MHD set. In the upper panel, we plotted the models
Dl1, Di1, and Dh1, where the low-resolution model Dl1 has
been repeated multiple times (solid thin lines). The dotted
thick line denotes the average of these runs. We Ðnd that
resolution e†ects are exceeded by statistical variations
caused by random variations of the driving Ðelds.

In the MHD case (lower panel), the thickness of the lines
stands for the strength of the Ðeld, expressed in terms of the
ratio Dotted lines denote low-resolution runs com-M/Mcr.puted with varying driving velocity Ðelds, as in the upper
panel. The high-resolution run with wasM/Mcr\ 1.8
stopped at because the time step becamet \ 1.0tff Alfve� n
prohibitively small. Increasing the resolution makes itself
felt for the runs with stronger Ðelds in the same way as for
the ones with weak Ðelds. The higher the resolution, the
better the small-scale MHD waves are resolved and, thus,
the slower the collapse. Collapse does always occur,
however.

4.2.3. Core Distribution

Although MHD waves cannot prevent local collapse
entirely, the resulting collapse appears qualitatively di†er-
ent from collapse in the hydrodynamic case with corre-
sponding global and driving strength. In thej

Jhydrodynamical case driven at shocks are widelyj
D

[j
J
,

separated and sweep up substantial mass, producing iso-

FIG. 7.È(Upper panel ) Core mass accretion rates for 10 hydro runs
with equal parameter set (model Dl1) but di†erent realizations of the turb-
ulent velocity Ðeld. The thick line shows a ““mean accretion rate,ÏÏ calcu-
lated from averaging over the sample. For comparison, the higher
resolution runs Di1 and Dh1 are shown. The latter one (N \ 2563) can be
regarded as an envelope for the low-resolution models. (L ower panel ) Mass
accretion rates for runs with identical magnetic Ðelds but di†erent driving
Ðelds and runs with identical driving Ðelds but di†erent magnetic Ðelds
(models El1w, Ei1w, Eh1w and El1i, Ei1i, Eh1i). The e†ects of magnetic
Ðelds are covered by variations caused by the turbulent velocity Ðeld.
Identical line styles stand for models with identical parameters but di†er-
ent driving velocity Ðelds. Models El1w and El1i have been computed three
times with varying driving velocity Ðelds.

lated clusters of cores. In the presence of a weak super-
critical Ðeld, the shock structure appears to have more
small-scale structure, resulting in cores distributed more
uniformly across the simulation volume, as shown in the
middle panel of Figure 8. In fact, the weakly magnetized
model driven on large scales with rather morej

D
[ j

Jresembles the hydro model driven on small scales with
shown in Figure 11 of Paper I.j

D
\j

JFigures 9 and 10 try to quantify this di†erence. Figure 9
shows the histogram of core distances for each panel of
Figure 8, multiplied with the mean core mass. A clustered
ensemble of high-mass cores should result in a peaked dis-
tribution at small distances, whereas a spread-out ensemble
of low-mass cores should have a broader distribution.
Figure 9 hints at such a behavior, although we are well
aware of the fact that the statistics barely suffice. Neverthe-
less, the distribution for the magnetized runs is shifted to
larger radii. Note that the total mass in the cores found is
within 10% the same for all three models. Figure 10 shows
the weighted means of core distances, with their standard
deviations as error bars. Again, we see a slight shift toward
larger separations, suggesting a more uniform distribution
of cores in the MHD cases, although larger simulations
with greater core numbers will be needed to conÐrm this
result.

4.2.4. Energy Distribution

Further evidence for a qualitative di†erence between
hydrodynamic and MHD collapse comes from Figure 11.
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FIG. 8.ÈProjected coordinates of clumps found when 10% of the total mass has been accreted onto cores. All simulations (models Dh1, Eh1w, and Eh1i)
are driven at wavenumbers k \ 1È2. For the pure hydro case, we get strongly clustered collapse, whereas for supercritical Ðelds, the cores are more evenly
distributed. For slightly supercritical Ðelds model Eh1i), the cloud tends to collapse along the Ðeld lines, so that the extent of the core(M/Mcr\ 1.8,
distribution is reduced in direction parallel to the initial Ðeld (vertically oriented in the plots).

FIG. 9.ÈHistogram of core distances weighted with the mean core mass
for the projected cores of Fig. 8. The box length is L \ 2. The weighted
means and their standard deviations are shown in Fig. 10. Although the
statistics are not sufficient, the magnetized models tend to show a more
uniform distribution.

FIG. 10.ÈWeighted means and their standard deviations for the core
distances of Fig. 9. The e†ect of low number statistics is clearly to be seen
(between six and ten cores were found).

Here, we show the time evolution of the ratio of kinetic to
potential energy decomposed into contributions from four
spatial scales. (The time resolution is somewhat coarse as
these models with 2563 zones were dumped only every t \

Whereas the hydrodynamic model (Dh1) driven at0.3tff.)k \ 1È2 collapses within less than the weakly magne-0.5tff,tized model Eh1w is supported until(M/Mcrit\ 8.3) t Z 1tffbefore also collapsing. This is at least qualitatively similar
to the behavior of model Dh3, which is driven at wavenum-
bers k \ 7È8 and thus has a denser network of shocks. On
the other hand, Figure 11 suggests that the stronger Ðeld
model Eh1i collapses even more thoroughly(M/Mcr\ 1.8)
than its hydrodynamical counterpart because of the order-
ing inÑuence of the strong mean Ðeld.

We use the model series G to follow the collapse to later
times and with more frequent time sampling. These 1283
models still resolve the Jeans length in the densest clumps,
as discussed in ° 4.2.2. We reduced the Mach number to
M\ 5 in order to maintain an energy input comparable to

FIG. 11.ÈTime evolution of the ratio of kinetic to potential energy,
T /V split up according to wavenumber k \ 1,2,4,8 (solid, dashed, dash-
dotted, and dotted lines) for models Dh1, Dh3 (driven at k \ 7È8), Eh1w,
and Eh1i. The horizontal line at T /V \ 1.0 indicates the instability bound-
ary. Time is normalized to units of global free-fall time Note that atff.strong subcritical Ðeld leads to faster collapse than a weak subcritical one.
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FIG. 12.ÈRatio of kinetic to potential energy against time for models G
with reduced number of Jeans masses split into contributions(n

J
\ 6.4),

from four spatial scales (k \ 1,2,4,8). All models show collapse except for
the magnetostatically supported one (Gi1s). Note that models Gi1w and
Gi1i behave as their counterparts Eh1w and Eh1i shown in Fig. 11.

models E. This decreases the rms post-shock density, so we
actually expect the G series to form cores with somewhat
more difficulty than the E series. Figure 12 shows the ratio
of kinetic to potential energy of the magnetized models in
the G series. (The hydrodynamical model Gi1 collapses
within half a free-fall time after gravity is turned on at
t \ 0.0.) With increasing Ðeld strength (models Gi1w and
Gi1i), the collapse is delayed but never prevented. This even
applies for Gi1m, where the Ðeld strength is only marginally
supercritical In this model, bound cores(M/Mcrit\ 1.1).
form but are then destroyed by passing shocks, probably for
the unphysical reason that they cannot continue collapsing
to sizes smaller than a few zones (see discussion in Paper I).
Increasing the Ðeld strength further leads to model Gi1s

where the Ðeld supports the cloud magne-(M/Mcrit\ 0.8),
tostatically and gravitationally bound cores do not form.

4.2.5. Energy Spectra

We next examine Fourier spectra of the energy. Figure 13
presents the spectra of kinetic, potential, and magnetic ener-
gies at times t \ 0.0 and of the high-resolutiont \ 1.5tffmodels Dh1 (hydrodynamic), Eh1w and(M/Mcr \ 8.3),
Eh1i all driven at wavenumber k \ 1È2. The(M/Mcr \ 1.8),
spectra at time t \ 0.0 represent fully developed turbulence
just before gravity is switched on. Here we Ðnd another
reason for the fast collapse of the more strongly magnetized
model Eh1i. The density enhancements caused by shock
interactions are larger for models Dh1 and Eh1i than for
Eh1w, as can be inferred from comparing the potential ener-
gies at t \ 0.0. Although still supercritical, the Ðeld in model
Eh1i is already strong enough to suppress motions perpen-
dicular to the mean Ðeld, so that the Ðeld strength perpen-
dicular to its initial mean direction is small, while strong
shocks/waves can be formed parallel to the mean Ðeld, as
observed as well by Smith et al. (2000). Thus, somewhat
surprisingly, the density enhancements are larger for the
stronger Ðeld model Eh1i than for the weak-Ðeld model

FIG. 13.ÈKinetic, potential, and magnetic energies for models Dh1
(k \ 1È2, Eh1w (k \ 1È2, and Eh1i (k \ 1È2,M/Mcr \O), M/Mcr \ 8.3),

at the time t \ 0.0 at which gravity is turned on in a state ofM/Mcr \ 1.8)
fully developed turbulence (upper row). For comparison, we included
power spectra of P(k)P k~5@3 and P(k)P k~2 (dotted lines). The lower row
contains the same models but for time t \ 1.0tff.

Eh1w, leading to earlier collapse, as seen in Figure 11. In
model Eh1w, the weaker, more turbulent magnetic Ðeld pro-
duces a more isotropic magnetic pressure that cushions and
broadens the shocks, thus decreasing the density enhance-
ments and delaying collapse.

We illustrate this e†ect in Figure 14, where we plot the x-
y- and z-components of the magnetic energy against time
for the magnetized models Eh1w and Eh1i. In the weak-Ðeld
case, the Ðeld is quickly tangled by the Ñow, so that it has no
preferred direction by t \ 0.0, when gravity is switched on.
The magnetic energy, and so the magnetic pressure, is iso-
tropic. There is no secular increase of any component with
time, thus supporting the picture of local collapse. In a
globally collapsing environment, the magnetic Ðeld lines
would follow the global gas Ñow and lead to a noticeable
increase of magnetic energy. In the stronger Ðeld case, on

FIG. 14.ÈMagnetic energy components for magnetic models Eh1w
(thick lines) and Eh1i (thin lines) against time. Solid lines denote the energy
of the z-component (initial mean Ðeld orientation), dashed lines the x- and
y-components. Gravity is turned on at t \ 0.0. In the weakly magnetized
model Eh1w, the Ðeld has ceased to show a net orientation at t \ 0.0. It has
developed a fully turbulent state. The strong Ðeld (Eh1i) continues to keep
its mean orientation.
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the other hand, the Ñow is dominated by the mean Ðeld
oriented along the z-axis. The Ðeld allows matter to move
more freely in the parallel than in the perpendicular direc-
tion. Matter thus collapses preferentially along Ðeld lines
Ðrst and then globally collapses.

After one free-fall time, all the models have collapsed
(Fig. 13). Note that, as in Paper I, for all kEpot(k)[ Ekin(k)
does not necessarily mean that the model becomes globally
unstable. With increasing time, becomes constant forEpot(k)
all k just because this is the Fourier transform of a d func-
tion, signifying that local collapse has produced pointlike
high-density cores. A similar argument applies for the
kinetic energy : the Ñat spectrum stems from local concen-
trations of kinetic energy around the collapsing regions.
Here, the spectral analysis no longer yields information on
global stability.

4.2.6. Conclusions

We conclude that the delay of local collapse seen in our
magnetized simulations is caused mainly by weakly magne-
tized turbulence acting as a more or less isotropic pressure
in the gas, decreasing density enhancements caused by
shock interactions. We feel justiÐed in claiming that mag-
netic Ðelds, as long as they do not provide magnetostatic
support, cannot prevent local collapse, even in the presence
of supersonic turbulence.

We note that once bound cores form, we take this as
evidence for local collapse, although subsequent shock
interactions may destroy these cores again. In a real cloud,
ambipolar di†usion would set in at the length scale of
transient cores, so that any internal turbulence would be
quickly dissipated, allowing further collapse, as discussed
in Paper I.

A large-scale driver, such as interacting supernova rem-
nants or galactic shear, together with magnetic Ðelds, seems
to act like a driver with a smaller e†ective scale in the sense
that both yield a more uniform core distribution and a
somewhat slower collapse rate. In weakly magnetized turb-
ulence, a more or less isotropic magnetic pressure reduces
the density enhancements behind shocks and thus slows
down the process of isolated collapse. In strongly magne-
tized turbulence, however, the mean magnetic Ðeld domi-
nates. The magnetic pressure is not isotropic any more, so
the shocks perpendicular to the mean Ðeld direction cause
high enough density enhancements for the regions to col-
lapse within a free-fall time.

Thus, for small Ðeld strength, the e†ective additional
pressure may be represented by a simple pressure term.
However, in the regime of Ðeld strength interesting for
molecular clouds, the Ðeld, although supercritical, is strong
enough to result in an anisotropic magnetic pressure. Mag-
netic turbulence is an all-scale nonisotropic phenomenon,

and the compression and perturbations on large scales
make the cloud Ðnally collapse.

5. SUMMARY

In this paper, we investigated whether magnetized turbu-
lence can prevent collapse of a Jeans-unstable region. From
our high-resolution simulations we conclude that :

1. In order to resolve self-gravitating MHD turbulence
using a grid-based method such as ZEUS-3D, the local
Jeans length should not fall short of at least four grid zones
for magnetostatic support and six grid zones for magneto-
dynamic support.

2. Local collapse cannot be prevented by magnetized
turbulence in the absence of mean-Ðeld support. Strong
local density enhancements caused by shock interactions
start collapsing at once.

3. However, the magnetic Ðelds do delay local collapse
by decreasing local density enhancements via magnetic
pressure behind shocks.

4. Weakly magnetized turbulence appears qualitatively
similar to hydrodynamic turbulence driven on a slightly
smaller scale, while stronger Ðelds close to but under the
value for magnetostatic support tend to organize the Ñow
into sheets and allow more clustered collapse.

5. The strength and wavelength of turbulent driving
governs the behavior of the cloud, overshadowing the
e†ects of magnetic Ðelds that do not provide magnetostatic
support.

6. MHD turbulence cannot prevent local collapse for
much longer than a global free-fall time. Stars begin to form
at a low rate as soon as local density enhancements con-
tract. This result favors a dynamical picture of molecular
clouds being a transient feature in the ISM (Ballesteros-
Paredes et al. 1999 ; Elmegreen 2000) rather than living for
many free-fall times.
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