252 research outputs found

    Time resolved particle dynamics in granular convection

    Full text link
    We present an experimental study of the movement of individual particles in a layer of vertically shaken granular material. High-speed imaging allows us to investigate the motion of beads within one vibration period. This motion consists mainly of vertical jumps, and a global ordered drift. The analysis of the system movement as a whole reveals that the observed bifurcation in the flight time is not adequately described by the Inelastic Bouncing Ball Model. Near the bifurcation point, friction plays and important role, and the branches of the bifurcation do not diverge as the control parameter is increased. We quantify the friction of the beads against the walls, showing that this interaction is the underlying mechanism responsible for the dynamics of the flow observed near the lateral wall

    Stem End Blockage in Cut Grevillea 'Crimson Yul-lo' Inflorescences

    Get PDF
    Grevillea Crimson Yul-lo inflorescences have cut flower potential, but their vase life is short. End of vase life is characterised by early wilting. The possibility of physiologically mediated stem end blockage was investigated. Hydraulic conductance of 2 cm long stem end segments declined rapidly and remained lower throughout vase life than that of 2 cm long stem segments from immediately above. Re-cutting daily to remove basal 2 cm stem ends increased solution uptake, delayed declines in inflorescence water potential and water content, and improved inflorescence vase life. S-Carvone is a potential inhibitor of wound related suberin formation, via inhibition of phenylalanine ammonia-lyase, and vase solution treatments with S-carvone (0.318 and 0.636 mM) delayed the decline in hydraulic conductance of basal 2 cm long stem end segments and decreases in vase solution uptake and relative fresh weight of cut stems, and extended vase life. Treatments with the catechol oxidase inhibitor 4-hexylresorcinol (2.5-10 mM) also delayed stem end blockage. These findings suggest that stem end blockage in cut G. Crimson Yul-lo stems is physiologically mediated

    The adipocyte hormone leptin sets the emergence of hippocampal inhibition in mice

    Get PDF
    This is the author accepted manuscript. The final version is available from eLife Sciences Publications via the DOI in this record.Brain computations rely on a proper balance between excitation and inhibition which progressively emerges during postnatal development in rodent. g-aminobutyric acid (GABA) neurotransmission supports inhibition in the adult brain but excites immature rodent neurons. Alterations in the timing of the GABA switch contribute to neurological disorders, so unveiling the involved regulators may be a promising strategy for treatment. Here we show that the adipocyte hormone leptin sets the tempo for the emergence of GABAergic inhibition in the newborn rodent hippocampus. In the absence of leptin signaling, hippocampal neurons show an advanced emergence of GABAergic inhibition. Conversely, maternal obesity associated with hyperleptinemia delays the excitatory to inhibitory switch of GABA action in offspring. This study uncovers a developmental function of leptin that may be linked to the pathogenesis of neurological disorders and helps understanding how maternal environment can adversely impact offspring brain development.This work was supported by the Ministère de la Recherche et de l’Enseignement Supérieur, Neurochlore (CD) and the National Institutes of Health (Grant MH086032, GW)

    Mind the bubbles: achieving stable measurements of maximum hydraulic conductivity through woody plant samples

    Get PDF
    The maximum specific hydraulic conductivity (kmax) of a plant sample is a measure of the ability of a plants’ vascular system to transport water and dissolved nutrients under optimum conditions. Precise measurements of kmax are needed in comparative studies of hydraulic conductivity, as well as for measuring the formation and repair of xylem embolisms. Unstable measurements of kmax are a common problem when measuring woody plant samples and it is commonly observed that kmax declines from initially high values, especially when positive water pressure is used to flush out embolisms. This study was designed to test five hypotheses that could potentially explain declines in kmax under positive pressure: (i) non-steady-state flow; (ii) swelling of pectin hydrogels in inter-vessel pit membranes; (iii) nucleation and coalescence of bubbles at constrictions in the xylem; (iv) physiological wounding responses; and (v) passive wounding responses, such as clogging of the xylem by debris. Prehydrated woody stems from Laurus nobilis (Lauraceae) and Encelia farinosa (Asteraceae) collected from plants grown in the Fullerton Arboretum in Southern California, were used to test these hypotheses using a xylem embolism meter (XYL'EM). Treatments included simultaneous measurements of stem inflow and outflow, enzyme inhibitors, stem-debarking, low water temperatures, different water degassing techniques, and varied concentrations of calcium, potassium, magnesium, and copper salts in aqueous measurement solutions. Stable measurements of kmax were observed at concentrations of calcium, potassium, and magnesium salts high enough to suppress bubble coalescence, as well as with deionized water that was degassed using a membrane contactor under strong vacuum. Bubble formation and coalescence under positive pressure in the xylem therefore appear to be the main cause for declining kmax values. Our findings suggest that degassing of water is essential for achieving stable and precise measurements of kmax through woody plant samples. For complete rehydration of woody samples, incubation in water under vacuum for 24 h is suggested as a reliable technique that avoids bubble problems associated with flushing under high positive pressure

    Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to analyze the association of mutation patterns in <it>gyrA </it>and <it>gyrB </it>genes and the ofloxacin resistance levels in clinical <it>Mycobacterium tuberculosis </it>isolates sampled in 2009 from East China.</p> <p>Methods</p> <p>The quinolone resistance-determining region of <it>gyrA/B </it>were sequenced in 192 <it>M. tuberculosis </it>clinical isolates and the minimal inhibitory concentrations (MICs) of 95 ofloxacin-resistant <it>M. tuberculosis </it>isolates were determined by using microplate nitrate reductase assays.</p> <p>Results</p> <p>Mutations in <it>gyrA </it>(codons 90, 91 and 94) and in <it>gyrB </it>(G551R, D500N, T539N, R485C/L) were observed in 89.5% (85/95) and 11.6% (11/95) of ofloxacin-resistant strains, respectively. The <it>gyrB </it>mutations G551R and G549D were observed in 4.1% (4/97) of ofloxacin-susceptible strains and no mutation was found in <it>gyrA </it>in ofloxacin-susceptible strains. The MICs of all ofloxacin-resistant strains showed no significant difference among strains with mutations at codons 90, 91 or 94 in <it>gyrA </it>(F = 1.268, <it>p </it>= 0.287). No differences were detected among strains with different amino acid mutations in the quinolone resistance-determining region of <it>gyrA </it>(F = 1.877, <it>p </it>= 0.123). The difference in MICs between ofloxacin-resistant strains with mutations in <it>gyrA </it>only and ofloxacin-resistant strains with mutations in both <it>gyrA </it>and <it>gyrB </it>genes was not statistically significant (F = 0.549, <it>p </it>= 0.461).</p> <p>Conclusions</p> <p>Although <it>gyrA/B </it>mutations can lead to ofloxacin resistance in <it>M. tuberculosis</it>, there were no associations of different mutation patterns in <it>gyrA/B </it>and the level of ofloxacin resistance in <it>M. tuberculosis </it>isolates from East China in 2009.</p

    Fatigue in neuromuscular disorders: focus on Guillain–Barré syndrome and Pompe disease

    Get PDF
    Fatigue accounts for an important part of the burden experienced by patients with neuromuscular disorders. Substantial high prevalence rates of fatigue are reported in a wide range of neuromuscular disorders, such as Guillain–Barré syndrome and Pompe disease. Fatigue can be subdivided into experienced fatigue and physiological fatigue. Physiological fatigue in turn can be of central or peripheral origin. Peripheral fatigue is an important contributor to fatigue in neuromuscular disorders, but in reaction to neuromuscular disease fatigue of central origin can be an important protective mechanism to restrict further damage. In most cases, severity of fatigue seems to be related with disease severity, possibly with the exception of fatigue occurring in a monophasic disorder like Guillain–Barré syndrome. Treatment of fatigue in neuromuscular disease starts with symptomatic treatment of the underlying disease. When symptoms of fatigue persist, non-pharmacological interventions, such as exercise and cognitive behavioral therapy, can be initiated

    Transcriptional networks orchestrating programmed cell death during plant development

    Get PDF
    Transcriptional gene regulation is a fundamental biological principle in the development of eukaryotes. It does control not only cell proliferation, specification, and differentiation, but also cell death processes as an integral feature of an organism's developmental program. As in animals, developmentally regulated cell death in plants occurs in numerous contexts and is of vital importance for plant vegetative and reproductive development. In comparison with the information available on the molecular regulation of programmed cell death (PCD) in animals, however, our knowledge on plant PCD still remains scarce. Here, we discuss the functions of different classes of transcription factors that have been implicated in the control of developmentally regulated cell death. Though doubtlessly representing but a first layer of PCD regulation, information on PCD-regulating transcription factors and their targets represents a promising strategy to understand the complex machinery that ensures the precise and failsafe execution of PCD processes in plant development
    corecore