Abstract

<p>Abstract</p> <p>Background</p> <p>This study aimed to analyze the association of mutation patterns in <it>gyrA </it>and <it>gyrB </it>genes and the ofloxacin resistance levels in clinical <it>Mycobacterium tuberculosis </it>isolates sampled in 2009 from East China.</p> <p>Methods</p> <p>The quinolone resistance-determining region of <it>gyrA/B </it>were sequenced in 192 <it>M. tuberculosis </it>clinical isolates and the minimal inhibitory concentrations (MICs) of 95 ofloxacin-resistant <it>M. tuberculosis </it>isolates were determined by using microplate nitrate reductase assays.</p> <p>Results</p> <p>Mutations in <it>gyrA </it>(codons 90, 91 and 94) and in <it>gyrB </it>(G551R, D500N, T539N, R485C/L) were observed in 89.5% (85/95) and 11.6% (11/95) of ofloxacin-resistant strains, respectively. The <it>gyrB </it>mutations G551R and G549D were observed in 4.1% (4/97) of ofloxacin-susceptible strains and no mutation was found in <it>gyrA </it>in ofloxacin-susceptible strains. The MICs of all ofloxacin-resistant strains showed no significant difference among strains with mutations at codons 90, 91 or 94 in <it>gyrA </it>(F = 1.268, <it>p </it>= 0.287). No differences were detected among strains with different amino acid mutations in the quinolone resistance-determining region of <it>gyrA </it>(F = 1.877, <it>p </it>= 0.123). The difference in MICs between ofloxacin-resistant strains with mutations in <it>gyrA </it>only and ofloxacin-resistant strains with mutations in both <it>gyrA </it>and <it>gyrB </it>genes was not statistically significant (F = 0.549, <it>p </it>= 0.461).</p> <p>Conclusions</p> <p>Although <it>gyrA/B </it>mutations can lead to ofloxacin resistance in <it>M. tuberculosis</it>, there were no associations of different mutation patterns in <it>gyrA/B </it>and the level of ofloxacin resistance in <it>M. tuberculosis </it>isolates from East China in 2009.</p

    Similar works