44 research outputs found

    Differential profiling studies of N‐linked glycoproteins in glioblastoma cancer stem cells upon treatment with γ‐secretase inhibitor

    Full text link
    We have recently demonstrated that Notch pathway blockade by γ‐secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post‐translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N‐linked glycoproteins from cell lysates using multi‐lectin chromatography and label‐free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC‐ and GSI‐treated groups, respectively, filtered by a combination of decoy database searching and Trans‐Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi‐lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87140/1/4021_ftp.pd

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Implementing balanced harvesting: practical challenges and other implications

    No full text
    Balanced harvesting (BH) has been proposed as an alternative to the paradigm of more selective fishing as practiced in most European and North American fisheries management. We examine options for the implementation of BH and evaluate the issues raised in such an implementation. Implementation is considered at the whole ecosystem level, in terms of the patterns of removal for all species, both commercial and bycatch. We suggest that a "laissez-faire" approach analogous to the African lakes where BH was first observed is inappropriate in managed developed world fisheries. We consider two further approaches: focusing on either the species caught or on the sizes of animal alone. We find that aiming to harvest all species with an exploitation rate appropriate to their productivity would require a degree of micro-management that is probably unachievable, with all captured species "choking" the fishery in sequence. The size-based approach works with an exploitation rate appropriate to the productivity at size, with no consideration of the species involved. This might superficially be easier to implement, as management would involve a limited number of size classes only. However, problems may arise due to the likely faster capture of the more easily catchable fish, and also likely targeting of the more valuable species within a size class. We identify a possible third option of "broad brush" metier-based management that may resolve some of these problems. Other issues include the management of protected, endangered, and threatened species (including mammals, reptiles, and birds), the management of already severely depleted stocks, and the capture of benthic invertebrates
    corecore