1,002 research outputs found

    A study of the formation, dissociation and reactivity of molecular dications.

    Get PDF
    This thesis describes the commissioning of a new position-sensitive coincidence (PSCO) time-of-flight (TOF) mass spectrometer, which has been designed and constructed for studying the dynamics and kinematics of dication-neutral reactions at low collision energies (4-25 eV). These reactions commonly form two singly charged ions that the PSCO experiment detects in coincidence on an event-by-event basis, allowing definitive partner ion associations to be made. Flight time and positional data are recorded for each ion allowing the calculation of their initial velocity vectors from which the complete dynamics and kinematics for each reactive event, including determination of reactant and product states, may be determined. The "simple" Ar2+-He collision system was investigated for the purposes of commissioning and quantifying the energy resolution of the new PSCO experiment, since it has been previously studied in the literature. Following the successful commissioning of the PSCO experiment, three more complex systems were studied: Ne2+-Ar, Ne2+-N2, CF22+-H 2O, in order to obtain an in-depth understanding of the dynamics and energetics of dication-neutral reactions. The PSCO investigation of the 2_ _ , electron transfer reaction in the Ne-Ar collision system revealed bimodal angular distributions of both products, Ne+ and Ar+, indicating the presence of two different electron transfer channels. The extraction of such detailed information for a simple "two-body" reaction (a reaction where two products are formed) shows that the PSCO experiment is a powerful tool for determining detailed dication-neutral reaction mechanisms. The Ne-N2 collision system indicated the presence of three reaction channels forming Ne+ + N+ + N in coincidence. Two of these channels were investigated revealing distinctly different mechanistic pathways. One channel involves the formation of a transitory collision complex, and the other appears consistent with a sequential process involving the fast dissociation of N2+*. Five reaction channels were observed for the CF22+-H2O collision system: three electron transfer channels and two bond-forming channels including a previously unobserved hydride transfer reaction

    The Solar--Stellar Connection

    Full text link
    Stars have proven to be surprisingly prolific radio sources and the added sensitivity of the Square Kilometer Array will lead to advances in many directions. This chapter discusses prospects for studying the physics of stellar atmospheres and stellar winds across the HR diagram.Comment: to appear in "Science with the Square Kilometer Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews (Elsevier: Amsterdam

    Future perspectives on sustainable tribology

    Get PDF
    AbstractThis paper highlights the future perspectives of sustainable tribology by examining the economic, environmental and social impact of three tribological case studies. One case study examines the sustainability and durability of micro-CHP systems looking the tribological phenomena generated within a scroll expander system. The scroll is the main part of a specific micro-CHP system and experiences wear and cavitation damage. The tribological optimization of the scroll expander improves the sustainability of the micro-CHP unit while it has a serious economic and environmental impact to the consumers and to the society in general. Another case study is focused on friction and wear performance of lifeboat launch slipways. The causes of high friction and wear during the RNLI's lifeboat launches along an inclined slipway are investigated with a view to reducing the environmental impact due to slipway panel wear and lubricant release into the marine environment. The project encompasses the sustainable design of slipway panels using design modifications based on tribological investigations to double their lifespan, while environmental and economic impact was significantly reduced by the use of biodegradable greases and water as lubricants. The final case study involves an investigation of recycled plastic materials to replace polyurethane used on skateboard wheels, scooters and similar applications. Polyurethane (PU) is difficult to recycle. With the dwindling resources and environmental problems facing the world today, recycling for both waste reduction and resource preservation has become an increasingly important aspect of sustainability. The tribological results showed that recycled polycarbonate plastic can effectively act as a substitute to polyurethane wheels. Moreover, sustainability considerations showing the environmental benefits of the use of recycled plastics over PU include reducing the CO2 footprint by 50% and the energy consumed by 60%, among other benefits. These case studies emphasise the importance of sustainable tribology in our epoch showing that increased sustainability performance can be achieved through tribology to a significant extent in many cases, providing stability to our world and more viable long term growth to our societies

    Effects of the field modulation on the Hofstadter's spectrum

    Full text link
    We study the effect of spatially modulated magnetic fields on the energy spectrum of a two-dimensional (2D) Bloch electron. Taking into account four kinds of modulated fields and using the method of direct diagonalization of the Hamiltonian matrix, we calculate energy spectra with varying system parameters (i.e., the kind of the modulation, the relative strength of the modulated field to the uniform background field, and the period of the modulation) to elucidate that the energy band structure sensitively depends on such parameters: Inclusion of spatially modulated fields into a uniform field leads occurrence of gap opening, gap closing, band crossing, and band broadening, resulting distinctive energy band structure from the Hofstadter's spectrum. We also discuss the effect of the field modulation on the symmetries appeared in the Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables

    Group theoretical analysis of symmetry breaking in two-dimensional quantum dots

    Full text link
    We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron densities in the case of a two-dimensional N-electron single quantum dot (with and without an external magnetic field). The breaking of rotational symmetry results in canonical orbitals that (1) are associated with the eigenvectors of a Hueckel hamiltonian having sites at the positions determined by the equilibrium molecular configuration of the classical N-electron problem, and (2) transform according to the irreducible representations of the point group specified by the discrete symmetries of this classical molecular configuration. Through restoration of the total-spin and rotational symmetries via projection techniques, we show that the point-group discrete symmetry of the unrestricted Hartree-Fock wave function underlies the appearance of magic angular momenta (familiar from exact-diagonalization studies) in the excitation spectra of the quantum dot. Furthermore, this two-step symmetry-breaking/symmetry-restoration method accurately describes the energy spectra associated with the magic angular momenta.Comment: A section VI.B entitled "Quantitative description of the lowest rotational band" has been added. 16 pages. Revtex with 10 EPS figures. A version of the manuscript with high quality figures is available at http://calcite.physics.gatech.edu/~costas/uhf_group.html For related papers, see http://www.prism.gatech.edu/~ph274c

    Large‐scale collaboration in ENIGMA‐EEG: A perspective on the meta‐analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity.

    Get PDF
    Background and purpose The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. Methods We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. Results We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. Conclusion The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
    corecore