24 research outputs found

    Ser80Ile mutation and a concurrent Pro25Leu variant of the VHL gene in an extended Hungarian von Hippel-Lindau family

    Get PDF
    Von Hippel-Lindau disease (VHL) is a rare autosomal dominant disease characterized by development of cystic and tumorous lesions at multiple sites, including the brain, spinal cord, kidneys, adrenals, pancreas, epididymis and eyes. The clinical phenotype results from molecular abnormalities of the VHL tumor suppressor gene, mapped to human chromosome 3p25-26. The VHL gene encodes two functionally active VHL proteins due to the presence of two translational initiation sites separated by 53 codons. The majority of disease-causing mutations have been detected downstream of the second translational initiation site, but there are conflicting data as to whether few mutations located in the first 53 codons, such as the Pro25Leu could have a pathogenic role. In this paper we report a large Hungarian VHL type 2 family consisting of 32 members in whom a disease-causing AGT80AAT (Ser80Ile) c.239G>A, p.Ser80Ile mutation, but not the concurrent CCT25CTT (Pro25Leu) c.74C>T, p.Pro25Leu variant co-segregated with the disease. To our knowledge, the Ser80Ile mutation has not been previously described in VHL type 2 patients with high risk of pheochromocytoma and renal cell cancer. Therefore, this finding represents a novel genotype-phenotype association and VHL kindreds with Ser80Ile mutation will require careful surveillance for pheochromocytoma. We concluded that the Pro25Leu variant is a rare, neutral variant, but the presence such a rare gene variant may make genetic counseling difficult

    Knock Down of Heat Shock Protein 27 (HspB1) Induces Degradation of Several Putative Client Proteins

    Get PDF
    Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target, but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6, transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells, the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of specific polypeptides through client-chaperone type of interactions

    STAT2 Mediates Innate Immunity to Dengue Virus in the Absence of STAT1 via the Type I Interferon Receptor

    Get PDF
    Dengue virus (DENV) is a mosquito-borne flavivirus, and symptoms of infection range from asymptomatic to the severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). High viral loads correlate with disease severity, and both type I & II interferons (IFNs) are crucial for controlling viral replication. We have previously reported that signal transducer and activator of transcription (STAT) 1-deficient mice are resistant to DENV-induced disease, but little is known about this STAT1-independent mechanism of protection. To determine the molecular basis of the STAT1-independent pathway, mice lacking STAT1, STAT2, or both STAT1 and STAT2 were infected with a virulent mouse-adapted strain of DENV2. In the first 72 hours of infection, the single-deficient mice lacking STAT1 or STAT2 possessed 50–100 fold higher levels of viral RNA than wild type mice in the serum, spleen, and other visceral tissues, but remained resistant to DENV-induced death. In contrast, the double-deficient mice exhibited the early death phenotype previously observed in type I and II IFN receptor knockout mice (AG129), indicating that STAT2 is the mediator of the STAT1-independent host defense mechanism. Further studies demonstrated that this STAT2-dependent STAT1-independent mechanism requires the type I IFN receptor, and contributes to the autocrine amplification of type I IFN expression. Examination of gene expression in the spleen and bone marrow-derived macrophages following DENV infection revealed STAT2-dependent pathways can induce the transcription of a subset of interferon stimulated genes even in the absence of STAT1. Collectively, these results help elucidate the nature of the poorly understood STAT1-independent host defense mechanism against viruses by identifying a functional type I IFN/STAT2 signaling pathway following DENV infection in vivo

    Chapter 19 Noise pollution and its impact on human health and the environment

    Get PDF
    This chapter deals with (1) the basic theory of sound propagation; (2) an overview of noise pollution problem in view of policy and standards by the World Health Organization, the United States, and the European Union; (3) noise exposure sources from aircraft, road traffic and railways, in-vehicle, work, and construction sites, and occupations, and households; (4) the noise pollution impact on human health and the biological environment; (5) modeling of regional noise-affected habitats in protected and unprotected land areas and the marine environment; (6) noise control measures and sustainability in view of sustainable building design, noise mapping, and control measures such as barriers and berms along roadsides, acoustic building materials, roadway vehicle noise source control, road surface, and pavement materials; and (7) environmental noise pollution management measures and their impact on human health

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe

    Low VHL mRNA Expression is Associated with More Aggressive Tumor Features of Papillary Thyroid Carcinoma

    Get PDF
    Alterations of the von Hippel-Lindau (VHL) tumor suppressor gene can cause different hereditary tumors associated with VHL syndrome, but the potential role of the VHL gene in papillary thyroid carcinoma (PTC) has not been characterized. This study set out to investigate the relationship of VHL expression level with clinicopathological features of PTC in an ethnically and geographically homogenous group of 264 patients from Serbia, for the first time. Multivariate logistic regression analysis showed a strong correlation between low level of VHL expression and advanced clinical stage (OR55.78, 95% CI 3.17-10.53, P<0.0001), classical papillary morphology of the tumor (OR52.92, 95% CI 1.33-6.44, P=50.008) and multifocality (OR51.96, 95% CI 1.06-3.62, P=50.031). In disease-free survival analysis, low VHL expression had marginal significance (P=50.0502 by the log-rank test) but did not appear to be an independent predictor of the risk for chance of faster recurrence in a proportion hazards model. No somatic mutations or evidence of VHL downregulation via promoter hypermethylation in PTC were found. The results indicate that the decrease of VHL expression associates with tumor progression but the mechanism of downregulation remains to be elucidated

    Broadly altered gene expression in blood leukocytes in essential hypertension is absent during treatment

    No full text
    We assessed whether large-scale expression profiling of leukocytes of patients with essential hypertension reflects characteristics of systemic disease and whether such changes are responsive to antihypertensive therapy. Total RNA from leukocytes were obtained from untreated (n=6) and treated (n=6) hypertensive patients without apparent end-organ damage and from normotensive controls (n=9). RNA was reverse-transcribed and labeled and gene expression analyzed using a 19-K oligonucleotide microarray using dye swaps. Samples of untreated and of treated patients were pooled for each sex and compared with age- and sex-matched controls. In untreated patients, 680 genes were differentially regulated (314 up and 366 down). In the treated patients, these changes were virtually absent (4 genes up, 3 genes down). A myriad of changes was observed in pathways involved in inflammation. Inflammation-dampening interleukin receptors were decreased in expression. Intriguingly, inhibitors of cytokine signaling (the PIAS family of proteins) were differentially expressed. The expression of several genes that are involved in regulation of blood pressure were also differentially expressed: angiotensin II type 1 receptor, ANP-A receptor, endothelin-2, and 3 of the serotonin receptors were increased, whereas endothelin-converting enzyme-1 was decreased. Strikingly, virtually no changes in gene expression could be detected in hypertensive patients who had become normotensive with treatment. This observation substantiates the long-standing idea that hypertension is associated with a complex systemic response involving inflammation-related genes. Furthermore, leukocytes display differential gene expression that is of importance in blood pressure control. Importantly, treatment of blood pressure to normal values can virtually correct such disturbances
    corecore