337 research outputs found
Nernst effect of iron pnictide and cuprate superconductors: signatures of spin density wave and stripe order
The Nernst effect has recently proven a sensitive probe for detecting unusual
normal state properties of unconventional superconductors. In particular, it
may sensitively detect Fermi surface reconstructions which are connected to a
charge or spin density wave (SDW) ordered state, and even fluctuating forms of
such a state. Here we summarize recent results for the Nernst effect of the
iron pnictide superconductor , whose ground state evolves
upon doping from an itinerant SDW to a superconducting state, and the cuprate
superconductor which exhibits static stripe
order as a ground state competing with the superconductivity. In , the SDW order leads to a huge Nernst response, which allows
to detect even fluctuating SDW precursors at superconducting doping levels
where long range SDW order is suppressed. This is in contrast to the impact of
stripe order on the normal state Nernst effect in . Here, though signatures of the stripe order are
detectable in the temperature dependence of the Nernst coefficient, its overall
temperature dependence is very similar to that of ,
where stripe order is absent. The anomalies which are induced by the stripe
order are very subtle and the enhancement of the Nernst response due to static
stripe order in as compared to that of the
pseudogap phase in , if any, is very small.Comment: To appear in: 'Properties and applications of thermoelectric
materials - II', V. Zlatic and A. Hewson, editors, Proceedings of NATO
Advanced Research Workshop, Hvar, Croatia, September 19 -25, 2011, NATO
Science for Peace and Security Series B: Physics and Biophysics, (Springer
Science+Business Media B.V. 2012
A model for the atomic-scale structure of a dense, nonequilibrium fluid: the homogeneous cooling state of granular fluids
It is shown that the equilibrium Generalized Mean Spherical Model of fluid
structure may be extended to nonequilibrium states with equation of state
information used in equilibrium replaced by an exact condition on the two-body
distribution function. The model is applied to the homogeneous cooling state of
granular fluids and upon comparison to molecular dynamics simulations is found
to provide an accurate picture of the pair distribution function.Comment: 29 pages, 11 figures Revision corrects formatting of the figure
Phonon thermal conductivity in doped : Relevant scattering mechanisms
Results of in-plane and out-of-plane thermal conductivity measurements on
() single crystals are
presented. The most characteristic features of the temperature dependence are a
pronounced phonon peak at low temperatures and a steplike anomaly at ,
i.e., at the transition to the low temperature tetragonal phase (LTT-phase),
which gradually decrease with increasing Sr-content. Comparison of these
findings with the thermal conductivity of and clearly reveals that in the most effective
mechanism for phonon scattering is impurity-scattering (dopants), as well as
scattering by soft phonons that are associated with the lattice instability in
the low temperature orthorhombic phase (LTO-phase). There is no evidence that
stripe correlations play a major role in suppressing the phonon peak in the
thermal conductivity of .Comment: 7 pages, 4 figure
Nernst Effect of stripe ordering LaEuSrCuO
We investigate the transport properties of
LaEuSrCuO (, 0.08, 0.125, 0.15, 0.2) with a
special focus on the Nernst effect in the normal state. Various anomalous
features are present in the data. For and 0.15 a kink-like anomaly is
present in the vicinity of the onset of charge stripe order in the LTT phase,
suggestive of enhanced positive quasiparticle Nernst response in the stripe
ordered phase. At higher temperature, all doping levels except exhibit
a further kink anomaly in the LTO phase which cannot unambiguously be related
to stripe order. Moreover, a direct comparison between the Nernst coefficients
of stripe ordering LaEuSrCuO and superconducting
LaSrCuO at the doping levels and reveals
only weak differences. Our findings make high demands on any scenario
interpreting the Nernst response in hole-doped cuprates
Political Radicalization as a Communication Process
Based on data taken from 412 adult education students in Montreal, Quebec, Canada, this research attempts to show that attitudes toward French Canadian Separatism by the sample members can be accounted for by differentiaf communication processes. Results show that attitudes held by sample members are well explained (R2 = .64) by a weighted average of the information they received from interpersonal and media sources. The resultant attitude shows substantial effects on behaviors related to separatism for the same respondents.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67215/2/10.1177_009365027400100301.pd
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
- …