46 research outputs found

    Ozone exchange within and above an irrigated Californian orchard

    Get PDF
    In this study, the canopy effects on the vertical ozone exchange within and above Californian orchard are investigated. We examined the comprehensive dataset obtained from the Canopy Horizontal Array Turbulence Study (CHATS). CHATS typifies a rural central Californian site, with O3 mixing ratios of less than 60 ppb and moderate NOx mixing ratios. The CHATS campaign covered a complete irrigation cycle, with our analysis including periods before and after irrigation. Lower O3 mixing ratios were found following irrigation, together with increased wind speeds, decreased air temperatures and increased specific humidity. Friction velocity, sensible heat and gas fluxes above the canopy were estimated using variations on the flux-gradient method, including a method which accounts for the roughness sublayer (RSL). These methods were compared to fluxes derived from observed eddy diffusivities of heat and friction velocity. We found that the use of the RSL parameterization, which accounts for the canopy-induced turbulent mixing above the canopy, resulted in a stronger momentum, heat, and ozone exchange fluxes above this orchard, compared to the method which omits the RSL. This was quantified by the increased friction velocity, heat flux and ozone deposition flux of up to 12, 29, and 35% at 2.5 m above the canopy, respectively. Within the canopy, vertical fluxes, as derived from local gradients and eddy diffusivity of heat, were compared to fluxes calculated using the Lagrangian inverse theory. Both methods showed a presence of vertical flux divergence of friction velocity, heat and ozone, suggesting that turbulent mixing was inefficient in homogenizing the effects driven by local sources and sinks on vertical exchange of those quantities. This weak mixing within the canopy was also corroborated in the eddy diffusivities of friction velocity and heat, which were calculated directly from the observations. Finally, the influence of water stress on the O3 budget was examined by comparing the results prior and after the irrigation. Although the analysis is limited to the local conditions, our in situ measurements indicated differences in the O3 mixing ratio prior and after irrigation during CHATS. We attribute these O3 mixing ratio changes to enhanced biological emission of volatile organic compounds (VOCs), driven by water stress

    On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces

    Get PDF
    Using a Large-Eddy Simulation model, we have systematically studied the inability of boundary layer turbulence to efficiently mix reactive species. This creates regions where the species are accumulated in a correlated or anti-correlated way, thereby modifying the mean reactivity. We quantify this modification by the intensity of segregation, <i>I</i><sub>S</sub>, and analyse the driving mechanisms: heterogeneity of the surface moisture and heat fluxes, various background wind patterns and non-uniform isoprene emissions. The heterogeneous surface conditions are characterized by cool and wet forested patches with high isoprene emissions, alternated with warm and dry patches that represents pasture with relatively low isoprene emissions. For typical conditions in the Amazon rain forest, applying homogeneous surface forcings and in the absence of free tropospheric NO<sub>x</sub>, the isoprene-OH reaction rate is altered by less than 10%. This is substantially smaller than the previously assumed <i>I</i><sub>S</sub> of 50% in recent large-scale model analyses of tropical rain forest chemistry. Spatial heterogeneous surface emissions enhance the segregation of species, leading to alterations of the chemical reaction rates up to 20%. The intensities of segregation are enhanced when the background wind direction is parallel to the borders between the patches and reduced in the case of a perpendicular wind direction. The effects of segregation on trace gas concentrations vary per species. For the highly reactive OH, the differences in concentration averaged over the boundary layer are less than 2% compared to homogeneous surface conditions, while the isoprene concentration is increased by as much as 12% due to the reduced chemical reaction rates. These processes take place at the sub-grid scale of chemistry transport models and therefore need to be parameterized

    The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    Get PDF
    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO<sub>2</sub>) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures

    Measuring efficiency of innovation using combined Data Envelopment Analysis and Structural Equation Modeling:empirical study in EU regions

    Get PDF
    The main aim of this paper is to investigate the impact of patent applications, development level, employment level and degree of technological diversity on innovation efficiency. Innovation efficiency is derived by relating innovation inputs and innovation outputs. Expenditures in Research and Development and Human Capital stand for innovation inputs. Technological knowledge diffusion that comes from spatial and technological neighborhood stands for innovation output. We derive innovation efficiency using Data Envelopment Analysis for 192 European regions for a 12-year period (1995–2006). We also examine the impact of patents production, development and employment level and the level of technological diversity on innovation efficiency using Structural Equation Modeling. This paper contributes a method of innovation efficiency estimation in terms of regional knowledge spillovers and causal relationship of efficiency measurement criteria. The study reveals that the regions presenting high innovation activities through patents production have higher innovation efficiency. Additionally, our findings show that the regions characterized by high levels of employment achieve innovation sources exploitation efficiently. Moreover, we find that the level of regional development has both a direct and indirect effect on innovation efficiency. More accurately, transition and less developed regions in terms of per capita GDP present high levels of efficiency if they innovate in specific and limited technological fields. On the other hand, the more developed regions can achieve high innovation efficiency if they follow a more decentralized innovation policy

    The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA)

    Get PDF
    To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders

    Advanced telematics for travel decisions: a quantitative analysis of the Stopwatch project in Southampton

    No full text
    The effect of telematics technology on public transport use is analyzed on the basis of a theoretical model. Two possible mechanisms (reduction of uncertainty and a better choice of bus options, based on a general cost-minimization assumption) that may stimulate bus use are distinguished. The model is empirically tested by using microdata from the Southampton Stopwatch telematics project, which were collected both before and after the introduction of this telematics information service. The estimation of the model leads to interesting findings in explaining (anticipated) increases in bus use, for both the before and the after survey. It is shown that uncertainty reduction is the more important effect of the new system. Differences in the before and after data are found concerning the increase in bus use, but the explanatory model proves consistent over the two samples.
    corecore