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Abstract. The effect of telematics technology on public transport use is analyzed on the basis of
a theoretical model. Two possible mechanisms (reduction of uncertainty and a better choice of
bus options, based on a general cost-minimization assumption) that may stimulate bus use are
distinguished. The model is empirically tested by using microdata from the Southampton Stopwatch
telematics project, which were collected both before and after the introduction of this telematics
information service. The estimation of the model leads to interesting findings in explaining (antici-
pated) increases in bus use, for both the before and the after survey. It is shown that uncertainty
reduction is the more important effect of the new system. Differences in the before and after data

are found concerning the increase in bus use, but the explanatory model proves consistent over
the two samples.

1 Introduction

In recent years several telematics technologies have been developed to offer better
information to travellers, so that the utility rise for potential users will encourage
them to choose public transport more frequently."” In public transport this information
concentrates on departure times, improving the accuracy of the travellers’ estimates
of these times. The lack of certainty about departure times of public transport 1s
considered to be one of the major obstacles in the way of an increased use of public
transport.

The aim in the present paper is to provide a solid economic analysis of the question
of how provision of information on arrival (or departure) times of public transport
(with particular emphasis on buses) impacts on the use of the mode. We assume
that two potential mechanisms are at work here. The first is that the reduction In the
uncertainty about how long travellers have to wait at the bus stop allows them to
make better use of this waiting time. The second mechanism is that travellers can
make a better choice among the services available to them (assuming that multiple
services satisfy their demand), which by definition decreases their overall expected
trip costs. Notice that the first mechanism also reduces overall expected trip cost by
the potential substitution of waiting (a cost factor) by an alternative activity (by
definition a preferable activity). Clearly, because both of the effects of information
provision lead to a decrease in expected overall cost, the impact on bus use can only
be nonnegative. The analysis is complemented by an empirical test on survey data of
individual trip-making behaviour of travellers.

The paper is organized as follows. Section 2 is devoted to the economic foundation
and analysis of the above-mentioned mechanisms. In section 3 we describe a recent

() It should be noted that telematics applications have been applied in many directions for
solving general transportation problems (congestion, environmental damage, etc). Two main
applications in this field are route guidance, to optimize road usage (Emmerink et al, 1995;
Mahmassani and Jayakrishnan, 1991) and telecommuting (Mokhtarian and Salomon, 1994;
Soekkha et al. 1990). A broad overview of methodologies and applications in telematics research
can be found in Niykamp et al (1996).
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telematics project in Southampton, in which some of these issues play an important
role. Next. in section 4 we present our statistical investigations. The paper concludes
with some strategic observations on the importance of telematics systems in public
transport.

2 Analyzing the effect of information provision

2.1 The basic model

Suppose a traveller T wants to make a trip for which two alternative modes are
available, namely bus and car. Assume that 7 1s a cost minimizer and let C, be the
cost of using the car and that this cost consists only of a fixed amount £, and let
(., be the cost of using the bus.

The costs of using the bus are assumed to consist of three parts: a fixed cost
F. . the cost of waiting itself, and a cost associated with the uncertainty involved in
waiting. Isolating waiting from the general costs, which include in-vehicle time, 1s
justified by the notion that people value waiting time two or three times higher than
in-vehicle time (Mohring et al, 1987). The inclusion of waiting-time cost 1s based on
an opportunity-cost approach. The cost due to uncertainty as explained above 1s 1n
essence also a measure of opportunity cost. This may seem to be a sort of double
counting but it 1s not. Uncertainty factually prohibits an alternative activity during
waiting. It seems reasonable to assume that U(no waiting) > U(alternative activity
during waiting) > U(just waiting), with U(.) any utility function. The cost of waiting
reflects the difference between U( just waiting) and U(no waiting), and the cost of the
uncertainty relates to the possibility of recapturing some of this disutility by doing
something else. Therefore both the waiting time and the uncertainty are involved as
cost terms.

Hence the cost of taking the bus for a given trip can be formulated as

C, = F, +aW+fa”. (1)

where waiting time, W, 1s multiplied by a factor, » (x = 0), which 1s a measure of
the time value, and the variance of the waiting time, ¢°, is a cost measure of the
uncertainty. weighted by a factor f (f = 0). Traveller 7 will compare these costs with
I which 1s the generalized cost of the alternative.

2.2 The effect of uncertainty reduction

In this subsection we concentrate on uncertainty reduction. neglecting the waiting
time W by assuming » = 0. As 7 1s a cost minimizer, for some given trip he or she
will choose the bus if

Fy+Bo° < F
Or

B B liar. (2)

—
1

We now assume that 7 considers a large number of trips during a given time
period and that the term F, — F 1nvolved in all these trips follows some probability
distribution. Suppose, for example, that this distribution 1s normal with mean 1,
m > 0, see figure 1(a). Referring to condition (2), 7 will choose the bus for all cases
where the difference in fixed cost is greater than f¢°; the point at which the difference
in fixed cost equals o~ will be called the modal-split point (ms point).

The effect of reducing the uncertainty 1s a shift of the ms point to the left [see
figure 1(b)]. The share of trips for which a change of mode occurs 1s given by the shaded

area. Consequently, the impact of a fixed reduction in uncertainty 1s dependent on
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three factors: first, the magnitude of the reduction in uncertainty, ¢ : second, the
magnitude of the parameter [j—these two factors together determine the size of the
shift of the ms point along the x-axis; and third the location (and shape) of the
distribution function.

The notion that the effect also depends on an unknown distribution function 1s
quite important. It shows that the largest effect of providing better information i1s not
necessarily to be expected to occur with those travellers who do not often travel by bus.
Ad hoc reasoning would make this seem plausible as less frequent bus travellers
have a large potential tor using the bus. The model shows, however, that the potential
increase 1n bus use 1s not only determined by the share of trips, left of the ms point,
but 1s also restricted to be on the right of the y-axis, because uncertainty cannot
become negative [see figure I(c)]. Notice by the way, that this type of reasoning holds
for any cost ftactor, which does not allow an interpretation as a benefit when it
becomes negative.

use of public
transport

e Lo/

() Mean Modal sphit point F, — K,

>

]

change of mode

() Mean  Modal split point Ie s—%,

change of mode

ﬁ----ﬂ---ﬂﬁﬁ-

=
=

0 Modal split point s

Figure 1. (a) The modal split with uncertainty; (b) change in modal split caused by uncertainty
reduction: (¢) influence of location of distribution.

2.3 The effect of improved optimality in type choice
The second effect of information provision is the improvement in choosing among
various types of public transport. In particular, assume that the traveller has two
hossibilities at the bus stop and that he or she receives information about the arrival
times of both buses. Our goal i1s to analyze how the improved optimality of the choice
between these types affects the attractiveness of the mode in general. Concentrating
on the variable W we simplify model (1) by assuming f = 0.

Suppose 7 can choose between two alternative types when taking a bus, a cheap
and an expensive one. The cost functions for the buses are now given by

C = F+aW,, i=ce,c, (3)

/
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where W, represents the waiting time for bus /, and e and ¢ index the expensive and
cheap bus, respectively. 7" chooses the bus if the minimum over / of the expectation
of equation (3) is less than C,. We will show that information about arrival times
has a nonnegative effect on equation (3). and hence increases the probability of 7°
taking the bus.

Suppose that 7 is at the bus stop, and 1s optimizing his or her (type of) bus-choice
problem. Let 7. and 7, be the waiting times for the cheap and expensive bus, respectively.
Clearly T will choose the cheap bus if 7. < 1, (that 1s, the cheap bus arrives first) because
then both cost elements (fixed cost and waiting time) are smaller for this alternative.
Moreover. 1n certain cases 7 may choose the cheap bus even if the expensive one arrives
first, and hence an extra waiting-time cost 1s incurred. This will happen when the
expected remaining waiting time for the cheap bus 1s sufficiently small that the extra
cost of taking the expensive bus outweighs the cost of a longer waiting time.

To proceed. suppose that the waiting times for both bus types are random variables
with density functions h.(s.) and h.(z,). respectively, both well detined on the interval
[0, ). We now consider the case that the expensive bus arrives first at /.. Taking
the expensive bus would yield the following costs:

F.+oat,. (4)

L.

However, T can also wait for the cheap bus to arrive to enjoy lower fixed costs, yet
Incurring more waiting-time costs which are moreover uncertain. Indeed, the expected
costs of waiting for the cheap bus are

F. + o L CEatd S dls (5)

J I

Thus. 7" will take the expensive bus 1if 1t arrives first and 1f expression (4) 1s less
than expression (5). Otherwise, 7" will take the cheap bus. By setting expression (4)
equal to expression (5) and solving for 7., a breakeven point, say ., 1s found at which
T is indifferent between the two buses.'”) Obviously, for ¢, < 1/, the expensive bus
will be chosen, as the expected additional waiting time for the cheap bus 1s longer
than 1s warranted by the reduction 1n fixed costs; for 7, > . 1t pays to wait for the
cheap bus. This 1s tllustrated in figure 2. This figure shows the waiting times for the
expensive bus on the horizontal axis and for the cheap bus on the vertical axis. On
the r.-axis the point ¢ 1s given. The shaded area indicates the arrival times of both
buses, such that s, <. (above the 45 line) and 1. < ;. Hence the shaded area
indicates the combination of arrival times for which the expensive bus 1s chosen.
Obviously, for some of the combinations the chosen bus 1s not optimal ex post, and
information provision can help to prevent 7" making the wrong bus choice in these
cases. This 1s now analyzed below.

Suppose that the expensive bus arrives first at 7., and that 7 gets information
about the (expected) arrival time of the cheap bus. Hence 7° will now compare
expression (4) with a new expression for the expected cost of taking the cheap bus:

F.+ar,.. (6)

) We assume that a unique 7, exists. It i1s not obvious what the conditions for this uniqueness
are. In any case 1t can easily be shown that when the distribution 1s normal, this uniqueness 1s
guaranteed (see the appendix) while assuming an exponential distribution gives either infinitely
many or no solutions, depending on whether or not (F, — F.)/2 = 1/d, with d the expectation
of the exponential distribution. We conjecture that unimodularity and continuity 1s a sufficient
condition for uniqueness, when this mode 1s 1n the range on which the distribution 1s defined
(not on the endpoints, as 1s the case for an exponential distribution). An anonymous referee 1s
acknowledged for making some helpful comments on this point.



Advanced telematics for travel decisions 1007

In this case 7. 1s no longer a random variable, but is the arrival time revealed by the
information.'” Comparing expression (4) with expression (6) gives a condition for
the arrival times, so that the expensive bus is chosen. This condition reads as

ot +F < ot + F,
or

. >t + — - . (7)

Notice that this latter condition implies 7. > 7.. The combination of arrival times for
which condition (7) holds can be drawn in a way similar to that in figure 2. Figure 3
has been drawn to compare the situations with and without information. This figure
can be used to demonstrate that information has the unequivocal effect of decreasing
the expected cost of using the bus.

In figure 3 the (r..1r.) space 1s divided into four areas. The unshaded area 1
represents all points for which in both regimes (with or without information provision)
the cheap bus 1s chosen. Similarly, the diagonally shaded area II contains all points
where 1n both regimes the expensive alternative is chosen. For the set of combinations
of arrival times that 1s horizontally shaded (area III), the expensive bus is chosen
when there 1s no information, whereas the cheap bus is chosen when information
provision 1s In effect. For these points taking the expensive bus is suboptimal, because
the extra waiting time does not exceed the difference in fixed cost. The vertically shaded
area [V shows the reverse case. For these combinations the cheap bus is chosen without
information provision, whereas the expensive alternative is chosen in the opposite case.
Again without information provision a suboptimal choice is made.

So far we have basically just shown what is well known from the literature on
the economics of information, namely, that economic subjects are at least as well off
when using free information. The interesting question is now how this effect depends

t. =1 .+ (F. — F.)/a

Figure 2. Bus choice without information. Figure 3. The information effect.

() Even if T considers the arrival time /. as a random variable, it is reasonable to assume
that the expectation of this variable i1s again the one indicated, so that expression (6) still
holds. A further complication may be introduced, however, by assuming that 7" does not adopt
the indicated arrival time as the new expected arrival time, but rather adjusts a prior expected
time with the information from the display. This would not affect the following demonstration
substantially, however.
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on other parameters of the problem, and in particular on the « coetficient representing
the value of time. It seems intuitively plausible that travellers with high values tor o,
that is, those with a high time preference, will profit most from information provision.
as the information typically has an effect on waiting times. Analyzing the above model
reveals. however. that this is not unequivocally so. This follows directly by observing
the effect at three distinct values for =, namely when « = 0, the value for « which
oives ¢, as indicated in figure 3, and a very large value of o, approaching infinity.

When « = 0, T attaches no cost at all to waiting. From expression (4), 1t follows
immediately that the cheaper bus will be taken, no matter how long 7 has to wait
for this bus. and this result 1s independent of the presence of any additional informa-
tion. From figure 3 we can see that as « tends to zero the 7. line shifts towards the
y-axis and for some value of x (not necessarily zero) eventually coincides with 1t. At
the same time the line given by 1. =1, + (F, — F.)/o shifts upwards. The result 1s
that both the areas I1I and 1V vanish. Hence the effect of information 1s zero when =
is zero. Similarly, when « tends to infinity, the value of time 1s so high that 7" will
always take the first bus to arrive, again independent of the additional information.
In terms of figure 3, the line given by ¢, =1, + (F. — F.)/2 now shifts downwards
and ultimately coincides with the 7. = 1, line. Also ¢, shifts to the right and the effect
again is that areas III and IV vanish. Thus, the effect of information provision i1s
zero. In between these extreme values, however, there will be— clearly illustrated in
figure 3—values of « for which the information effect (1E) 1s strictly positive.

b = ol — £

b, |

- Subtract

Add

[ ¢

Figure 4. Change in IE, from change 1n 2.

Assuming that IE depends continuously on « implies that there will be some value
of » for which IE is maximal, but this « 1s not so easy to determine, because a
change in z results in three changes in the determination of IE, see figure 4. First, ,
changes as a result of a change in «.® Second, the line 1. = 1, + (f. — F.)/a depends
on 7, and hence also shifts. Third, in determining IE, the indicated areas in figure 4
have to be weighted with the net gain that is achieved in these areas, and this net
gain also depends on «. Hence, it is far from clear how IE behaves as a function of .

Nevertheless, although this functional form i1s unknown, we do know that the
effect of information will in general be larger for intermediate values of « than at 1ts
limits. For practical purposes we may assume a unimodal functional form.

3 The Stopwatch project in Southampton
Our case study concerns the application of a real-time passenger-information system,
called Stopwatch, in the urban area of the city of Southampton (United Kingdom).

4 A positive relation between « and ¢, 1s conjectured. This 1s further investigated in the appendix.
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Stopwatch 1s part of the SCOPE field trial project.®’ SCOPE stands for Advanced
Transport Telematics (ATT) applications in Southampton, Cologne, and Piraeus.
The emphasis of this project was on improving information infrastructure by provid-
Ing accurate and timely traffic information. The overall objective was to increase the
efficiency of the network by increasing the share of public transport in the modal
split, which would be accompanied by a reduction in automobile traffic congestion.

Within SCOPE and ROMANSE (Road Management System for Europe), for
Southampton, a computer model and control system were created for integrated urban
transport management. The particular ATT systems developed and tested on this site
are the provision of multimodal schedule information, technologies for the location
and 1dentification of public transport vehicles, and the integration of schedules with
real-time information.

The real-time information system Stopwatch for bus users involves the equipping
ol bus stops with electronic signs which can give minute-by-minute information about
approaching vehicles as well as about delays and disruptions to services. The informa-
tion provided to passengers covers the next five approaching buses. their destinations.
and an accurate estimate of when they will actually arrive at the stop. These ‘intelligent’
bus stops are fed continuously with data from the Automatic Vehicle Location (AVL)
system, which incorporates equipment on buses and along the bus routes (beacons). By
means of dead reckoning an estimation of the position of the respective buses is made.,
and passed on to a Traffic and Travel Information Centre (TTIC), which forwards the
iInformation to the bus stops. The specific aim of Stopwatch was to improve the overall
quality of bus services which might in turn increase patronage.

The Stopwatch system operates in a deregulated environment and provides infor-
mation on a trial corridor for eleven services operated by two different bus operators
serving Southampton, Southampton City Bus (nine services) and Solent Blue Line
(two services). In total 44 bus stops have been equipped with displays, receiving data
from 144 vehicles in the pilot scheme. The complete system has been operational
since January 1994,

The Stopwatch project is monitored to analyze the effects of this telematics tech-
nology on bus use. In August 1993 (four months before the introduction of Stopwatch)
and 1 October 1994 (with Stopwatch in operation for 9 months) a questionnaire
survey was held among bus users. On both occasions respondents at a number of
bus stops were interviewed with almost identical questionnaires.

The main conclusions from the statistical analysis of the resulting data sets are
(BATT, 1995):

(1) The increase in bus use attributable to Stopwatch is an estimated 5%. Besides
that, some 24% of the respondents in the ‘after’ survey were new bus users, that is.
they had never used the bus before on this route. It is not clear to what extent the
generation of this bus use can be attributed to Stopwatch. Definitely not all 24%
will be a reaction to Stopwatch, but there is no reason to assume that Stopwatch did
not contribute at all.
(2) Stopwatch contributes to the appreciation of bus use: the level of satisfaction
with the product “bus’ has generally increased since the introduction of Stopwatch.
(3) The appreciation was greatest for young students or young employed. These
groups also showed the largest increases in bus use.

) This was a cross-European initiative led by Hampshire County Council with support from the

UK Department of Transport and the European Commission’s Transport Telematics Programme
(DRIVE 11, 1992 -1994). For turther details on SCOPE, see BATT (1995).
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For further results from this questionnaire we refer to the findings reported to
DRIVE 11 (see BATT, 1995). The conclusions cited here illustrate three points which
are important for our purposes:

(1) The technology does indeed lead to an increase in bus use.

(2) Besides the direct effects discussed in section 2, the indirect effect of improved
quality and rehability of the bus service 1s likely to have a lasting eftect which may
be much more important in the long run.

(3) The analysis should take into consideration socioeconomic characteristics of the users.

4 Empirical results

4.1 Some preliminary remarks

The analysis of section 2 led to two relations that can be investigated with the data
from the Stopwatch project. The first result, following from the analysis of uncertainty
reduction. predicts that the effect ot Stopwatch will be larger when:

(a) the uncertainty of arrival times 1s greater:

(b) the cost attached to this uncertainty 1s larger:

(c) the modal-split point 1s closer to the mode of the distribution which describes
the difference 1n fixed cost of the trips involved.

The second result, following from an immproved choice situation at the bus stop,
predicts a unimodal relation between the increase of bus use due to Stopwatch and
the value of time, with a maximum at intermediate values. Both relations will be
investigated here.

The dependent variable to be used below 1s a binary variable y, where a value of |
indicates an increase 1n bus use due to the introduction of Stopwatch. The model
analyzed 1n section 2 predicts unequivocally no decrease in willingness to use the
bus. Therefore, the binary variable measures whether this increased willingness to use
the bus 1s large enough to induce an observable (expected) increase in bus use. For the
analysis we use the famihar logit model.

4.2 Uncertainty reduction
The effect of Stopwatch on bus use as a result of uncertainty reduction depends on
the three factors mentioned above. These factors are operationalized as follows.

The uncertainty of arrival times 1s represented by a variable FREQ, which gives
the inverse of the frequencies of the bus service—that 1s, the interarrival times—as
reported by the respondent.'® Missing values for the variable were interpreted as an
absence of knowledge, that i1s, maximal uncertainty, and for practical reasons they
were given the value 120 (a bus arrives each 120 minutes), which 1s twice the largest
observed value for the variable. In the estimation a positive coeflicient 1s expected.

A second variable representing uncertainty is the timetable knowledge, TTK, of
the respondent. It 1s assumed that such knowledge reduces the uncertainty and given
the definition of the variable—implying that more knowledge 1s represented by smaller
values—a positive coefficient is expected.!”

) No information is given about the punctuality of various bus services, which would be the
more relevant proxy for uncertainty. Consequently, interarrival times can be used to reflect
uncertainty, basically because a small interarrival time leaves fewer possible outcomes. For
example, an interarrival time of 2 minutes practically prohibits a waiting time of, say, more
than 5 minutes. whereas an interarrival time of 10 minutes makes a waiting time of 5 minutes
not impossible. This shows that interarrival times can be used as a measure of uncertainty,
when no further information on the probability distribution is available,

(/) The variable for timetable knowledge assumes three values: 1 for those who do have
knowledge, 2 for those who just know the frequencies of the buses running, and 3 for those
who have no timetable knowledge.
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The attitude towards uncertainty 1s measured by the relative importance attached by
the respondents to time-related features of the bus service. The survey contained a
question in which the respondent was asked to indicate the importance of six features
(measured on a scale from l: unimportant to 5: very important), three of which were
related to arrival times. The ratio of the scores on the time-related features to the sum of
the scores on all features 1s used as the variable IMPTF, thus measuring the relative
importance of time-related features. A positive coefficient is expected.

Assuming a unimodal function for the distribution of F, — F,, for example, a
normal distribution function [compare figure I(c)] implies that the increase in bus
use 1s largest for respondents with an ms point close to the mode, and smallest for
respondents with an ms point in the tails. This means that respondents with about
an equal share of bus and car trips are expected to indicate most often an increase,
and respondents with a clear preference for either of the two modes are expected to
show a smaller increase. The difference between two categorical variables, measuring
the use of bus and the use of alternatives on the route, respectively,'® 1s defined as the
variable SHAREBUS, which 1s included both as a linear and as a quadratic term in the
estimation, accounting for the predicted unimodal relationship. So, for the quadratic
term a negative coefficient 1s expected, whereas the linear term may assume either sign.

These variables were used 1n the logit estimation of the Stopwatch effect, for
both the ‘before’ and the ‘after’ survey. The ‘after’ survey in addition offered the
opportunity to include a variable which measured the perceived accuracy of the Stop-
watch information, ACCURACY. The larger this accuracy, the larger the reduction in
uncertainty, and the larger the effect of Stopwatch according to the model. Because
accuracy 1s measured by its opposite, the deviance of the Stopwatch time from the
realized arrival time, a negative coefficient is expected.

The results of the estimations are given in the first columns of table 1 (see over)
where the age and gender of the respondent are included as control variables. The
estimations are moderately successful. For the ‘before’ data all coefficients have the
expected sign (though most are not significant), and the location of the optimum
with respect to the variable SHAREBUS at 0.82 (that is, at a value which indicates
only a shghtly larger share for bus) 1s reasonable. The improvement in likelihood 1s
for the most part attributable to the control parameters, but the improvement due
to the model 1s also significant.

For the "after’ data only two variables have the expected sign, including the variable
ACCURACY which was not included in the ‘before’ estimation. Again the improvement
in likelthood 1s significant, and in this case the largest part 1s due to the model
parameters. If we compare the ‘before’ and ‘after’ results, only one parameter has the
correct sign in both cases. The results for the control parameters give a reasonably
similar pattern as tar as age 1s concerned, but the gender parameter changes sign.

An explanation for these observations may be that the respondents a priori largely
overestimate the accuracy of the system, and hence react strongly and in line with the
model. When the technology 1s working, beliefs about the effect are replaced by
experience and the effect of the measure 1s strongly related to the perceived reduction
of uncertainty. It thus appears that the respondents in the ‘before’ study were not entirely
adequately informed on the expected or plausible effects of the Stopwatch project.

4.3 Improved bus choice at the stop
Improvement of the bus choice at the bus stop was shown to be critically dependent
on the time preference of the respondent. The available data set gives no explicit

) For both variables the same categories were defined, namely |: more than 4 times a week:
2: 1 to 3 times a week: 3: 1 to 3 times a month; 4: less than once a month; 5: never used before.
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Table 1. Stopwatch effect for partial and full model.

Variable

Uncertainty reduction

Improved bus choice at stop

before after before after
est. SE est. SE est. Sk est. Sk

Constant —242 0.75*% 3.14 3.14 —1.79 0.40** —4.07 0.88**
Male —0.29 0.15* 013 0.29 —0.26 0.15* 0.14 0.29
Age

25-34 —0.24 0.21 —0.15 (.40 —0.26 0.21 —-0.22 0.39

35-44 —0.60 024 ** —0.59 0.45 —0.60 0.24** —-0.54 044

45-59 —0.32 0.21] —1.44 0.62** —0.39 0. 21 —1.66 0.62**

6() + —1.21 ().22%* —0.77 (.43% —1.30 0:2)** —0.88 042**
FREQ 0.001 0.003 —-0.045 0.025%*
TTK 0.27 0.085** —4.97 2.49%*
IMPTF .70 [.38 2.67 2.28
SHAREBUS —0.018  0.050 0.074 0.10
(SHAREBUS)- —0.011 0.016 0.010 0.038
ACCURACY —0.65 0.16**
EWT 0.14 0.09 0.40 0.20**
(EWT)- —0.006 0.005 —0.023 0.011**
Number of observations 1494 1250 1494 1250
Log-lhkelihood —628.20 —199.18 —634.23 —-212.49
Log-likelihood (c¢) —637.91 —215.18 —637.91 —215.18
Log-likelhhood (0) —660.11 —222.48
L RT~{(C) |9:42** 32:02** 1.3 5.39*
LRT (0) 63.81** 46.6] ** 51.76** |9.98**

* Significant at 10% level; ** significant at 5% level.

Note: The dependent variable., the Stopwatch effect, is | 1f the respondent reports an
(expected) increase in bus use due to the introduction of Stopwatch. Est. means estimate of the
variable: SE means standard error of the estimate; Log-likelthood 1s the log-hikelihood at
the optimum: Log-likelihood (c) is the log-likelihood when only the control variables (age
and gender) are included; Log-likelihood (0) is the log-likelthood when only the constant is
included. The hikelihood ratio test statistics (LRT) are similarly defined.

information on time preferences of travellers. Therefore, approximate variables have
to be used.

The proxy we use is expected waiting time (EWT) which 1s the time travellers expect
to wait until the bus they intend to take arrives, from the moment they arrive at the bus
stop. The idea is that people with high time preferences will minimize their expected
waiting time, whereas people with low time preferences will not care very much
about waiting and hence will have longer waiting times on average. Thus, a monotonic
negative relation between expected waiting time and time value may be postulated.””
EWT is measured in minutes when waiting time i1s 10 minutes or less, and a residual
category ‘more than 10 minutes. For estimation purposes, this last category 1s set to
15 minutes.!9)

() Other proxy variables we used (destination of the trip, occupation of the respondent) gave
far less satisfactory results.

19 This is justified by the observation that the majority of the respondents report waiting
times of either 5 or 10 minutes. A similar tendency of reporting multiples of 5 minutes was
observed by Small (1982). These values seem to be readily ‘available’ in the respondent’s mind
when such a question is asked. Thus, it i1s reasonable to assume that a similar internal value
(15 minutes) is a reasonable guess, when waiting time exceeds 10 minutes (compare Tversky and

Kahneman. 1982). See Small (1982) for a different treatment.
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Variable Combined effects
before after
est. SE est. SE

Constant —=2.97 ().8 3= 1.6/ 3. 21
Male —0.29 0.15" —0.11 (.30
Age

25-34 —(0.22 0.21] —0.13 0.40

35-44 —0.60 0.24** —0.57 0.45

45— 59 —-0.31] 0.21 = Y- 0| DL62**

60) + —1.21 (). 291 —0.70 0.43*
FREQ 0.001 0.003 —0.046 0.025*
TTK 0.24 0.086** —5.15 2.5)%*
IMPTF | .7 .38 2.68 2.29
SHAREBUS —~0.016 0.050 0.072 0.10
(SHAREBUS)- —0.011 0.016 0.011 0.038
ACCURACY —0.67 O:16**
EWT 0.13 0.09 0.44 0.20**
(EWT)- —0.006 0.005 20025 0011
Number of observations 1494 1250
Log-hkelihood —626.43 —196.45
Log-likelthood (c¢) —637.91 —215.18
Log-likelthood (0)
LRT (¢) 22.96%* 3/.46**
LRT (0) 67.36** 52.06**

The middle columns of table 1 give the estimations, with the same control variables
included as above. The estimation is again moderately successful. The EWT variables
have the correct signs that lead to a maximum probability of increased bus use for
some positive value of EWT, namely 12 minutes in the ‘before’ sample, and 9 minutes
in the ‘after’ sample, which are reasonable values in light of the range of EWT. In
addition. the increases in the likelihood are again significant. In this case there are
no important differences between the ‘before’ and the “after’ sample results.

4.4 Combined effects

When both model elements are included simultaneously (see the last two columns
of table 1) we find that most results are not substantially affected. A comparison of
the increases in likelihoods. however, reveals that the effect attributable to uncertainty
reduction is larger than the effect of the improved bus choice at the bus stop. This
holds for both the ‘before” and ‘after’ data. This observation suggests that uncertainty
reduction is the most important effect of the Stopwatch technology.
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S Conclusions and discussion

Information technology can indeed help in increasing public transport use, that is.
getting people out of their cars and onto the bus. In this paper we have modelled
two icentives for this modal change—the reduction of uncertainty at the bus stop and
the improved optimality of bus choice at the stop—and pointed to a third reason, the
general increase 1n perceived quality of the service.

According to the model. information technology can lead only to a nondecrease
in bus use. This can be regarded as a specification of the general result that (free)
information always leads to better choices and therefore to increases in utility (for
example, see Marschak, 1974). The empirical analysis based on the model basically
investigated whether the potential increase in utility would be sufficient to produce
an actual change i modes. This empirical analysis proved the relevance of the
model. as most hypotheses derived from the theory were not rejected despite the fact
that proxy variables had to be used. It also suggested that from the two incentives
distinguished. the eftect of uncertainty reduction was the more important.

Thus. we have demonstrated the potential effect of information technologies in
generating increases in bus use, both theoretically and empirically. The size of the
elfect needs to be investigated further but is likely to range from small (5%) to
substantial (over 20%). Average users and people with intermediate time preferences
are expected to profit most from such technologies, while in particular the elderly
do not seem to be very interested. So, policy initiatives to stimulate further bus use
on the basis ol information technologies should be directed to the younger generation
such as students and (voung) professionals.
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APPENDIX
[t 1s evident that 7, depends on z«. Here we will support our conjecture that this
relation 1s positive, that i1s, that 7, increases when « increases. The argument 1s as

follows. First, ¢, 1s the solution of the equation [assuming that this solution exists,
see footnote (2) in the text]:

LA 1

F. + o bl [ B )@l = B, o, (Al)
Solving this equation will in general not lead to a closed-form solution for ¢, .
depending on the distribution function which 1s used. However, equation (Al) can be
formulated as an implicit function

F, — F, &

G(r,. o) = — : — rt_.—[ Eolls | B S lphidits = O (A2)
and the solution ¢ 1s then a function of «,

Gl (&), ¢ = D. (A3)
This allows for the application of the implicit function theorem which says

o,  0G /oG Ad

do  Oa / Ot (A4)
Now 0G/0x 18

cG AF

= = (AS)

Od 7 4

where AF = F, — F.. Thus, by definition AF > 0, and expression (A5) 1s unequivocally
negative. The determination of the sign of dG/dt,; is, however, much more complicated.
Writing H, for the cumulative distribution function of /., we find

"-“.G =T ] » OX
; = -xL 'r:.: l Iu.:hu(ru)d!t
at, or. | | —= B0 ) 3 |
1 —H_ (¢))]e h(e)) [T
- . l..( ¢ ” ¢ 'L:( ¢ ) l rL hL( {L) de (A6)
1 — H.(¢.)] ;
After some rearranging this gives

€ h.(t =
i—_ = 4 el ) (r, —t.)h.(r.)dr. (A7)
(‘ﬁ[': [] it HL([L ) T '

Clearly, the integral in equation (A7) is negative as the integrand 1s negative, because
. >t . It is, however, conjectured that under certain conditions (for example, log-
concavity) the entire expression is positive; in other words, that the integral multiplied
»y the density in 7, and divided by the square of the probability mass right of . 1s
arger than —1. Given the correctness of this conjecture 0G /01, 1s positive, and this
in combination with the negativeness of expression (AS) proves that 0r; /0x > 0
because of expression (A4).

The conjecture is easily affirmed when a uniform distribution over the interval
(0.k.] is assumed for h.. The inequality can also be proven for normal distributions.
For a standard normal distribution we know the expression for the expectation of a
truncated variable (x > ¢) to be (see Maddala, 1983):

P(c)

ElN|x > e) = T = M)




1016 H Ouwersloot, P Niyjkamp, G Pepping

Differentiating this with respect to ¢ gives

F‘:U e cP(c) I "/’(")d}("l — M*> - Mec.
Oc¢ | — D(c) | — &(c)

The variance of a truncated normal variable 1s known to be
var(x|x > ¢) = | —=M(M —ic).

Thus. the variance is | minus a term which 1s identical to the derivative of the
expectation. But because the variance is by definition positive, it follows immediately
that this derivative is less than 1, which was to be proven. As could be expected an
analogue proof also holds for normal distributions 1n general.

Notice that a consequence of this proof i1s that if a solution ¢, exists for normal
distributions it also is unique [see footnote (2)]. Rewriting expression (A2)—imple-
menting the normal distribution—as:

AF[l — @(1,)]
t, — ()

% [

we find that % is monotonically decreasing in .. Therefore the function described by
equation (AS8) is one-to-one, and hence a solution, if it exists, 1s unique, and this
also holds for the inverse function.

[n general (that is, without imposing ‘certain condition’) the inequality cannot be
proven, however. In particular, for an exponential distribution with mean 1/d, the
truncated mean is 1. + 1/d. This leaves equation (Al) independent of . and hence
Ot /O0x = 0. This suggests, however, that 0r; /0x 1s nonnegative instead ot strictly
positive. Although this is less convincing, it would not really frustrate the argument
in the text.!'!

1D We wish to thank one anonymous referee for making some useful and challenging comments
on the points raised in this appendix.
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