138 research outputs found

    Studies of the Gaviota Slide Offshore Southern California

    Get PDF
    We are engaged in a study of a seafloor landslide off the coast of Santa Barbara, California. A large scar there remains from the Goleta slide, a well studied feature (1.51 km3 of failed material) that likely failed several thousand years ago. A smaller neighboring feature, the Gaviota slide (0.02 km3 of failed material), was probably triggered during the 1812 Santa Barbara earthquake. Our investigations started in 2004 with a chirp sonar survey. The survey revealed a relationship between a “crack” in the sediment propagating from the Gaviota slide’s headwall and a thrust fault clearly seen in the subsurface layers. In the next phase of our project we are applying three new time-lapse seafloor geodetic techniques that vary in spatial and temporal resolution. One method uses optical fibers stretched and buried in the sediment to monitor creep. Each cable has an optical system that measures the absolute length of the stretched optical fiber with a precision of 1 mm every hour. The cables vary in length from 250 m to 750 m. A second system consists of an array of precise acoustic transponders on the seafloor interrogated by several buoyantly suspended command nodes. Offshore engineering tests of these reveal a precision of 5 mm over baselines up to 2 km. Finally, we are developing an AUV-borne precision mapping capability that promises to provide a monitor of seafloor shape changes that occur over tracklines of many kilometers in length with a precision goal of 10 cm. We are currently preparing these geodetic monitoring tools for deployment across a presumed future headwall near the Gaviota slide in a nested fashion to provide redundancy and a means to compare resolutions

    Exploring Memory Interventions in Depression through Lifelogging Lens

    Get PDF
    Depression is a major affective disorder with significant socio-economic cost. Distinctive autobiographical memory impairments in depression include overgeneralization, negative-bias, and repetitive negative thinking. Some psychotherapeutic interventions are designed to address these impairments, with insufficient technological support. This paper reports on an analysis of four memory-based interventions proven effective in therapeutic practice for depression, while explores the memory impairments addressed by these interventions. We address these findings into three design implications for digital tools in this space. We suggest supports for enriched positive memory recall, strategically negative memory reappraisal and future episodic imagination

    The Petrochemistry of Jake_M: A Martian Mugearite

    Get PDF
    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes)

    Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from approximately average Martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved indicating arid, possibly cold, paleoclimates and rapid erosion/deposition. Absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low temperature, circum-neutral pH, rock-dominated aqueous conditions. High spatial resolution analyses of diagenetic features, including concretions, raised ridges and fractures, indicate they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components and hydrated calcium-sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. Geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars

    Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale crater, Mars

    Get PDF
    H₂O, CO₂, SO₂, O₂, H₂, H₂S, HCl, chlorinated hydrocarbons, NO and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H₂O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO₂. Concurrent evolution of O₂ and chlorinated hydrocarbons suggest the presence of oxychlorine phase(s). Sulfides are likely sources for S-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic C sources may be preserved in the mudstone; however, the C source for the chlorinated hydrocarbons is not definitively of martian origin

    A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    The Curiosity rover discovered fine-grained sedimentary rocks, inferred to represent an ancient lake, preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. C, H, O, S, N, and P were measured directly as key biogenic elements, and by inference N and P are assumed to have been available. The environment likely had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars

    Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sedimentary rocks at Yellowknife Bay (Gale Crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 Å indicating little interlayer hydration. The Cumberland smectite has basal spacing at ~13.2 Å as well as ~10 Å. The ~13.2 Å spacing suggests a partially chloritized interlayer or interlayer Mg or Ca facilitating H_2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time

    X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater

    Get PDF
    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe^(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii

    The impact of operational strategies and new technologies on railroad capacity

    Get PDF
    North American freight railroads are expected to face increasing capacity constraints due to substantial, expected long-term growth in traffic. In order to meet this forecasted demand railroads must efficiently use existing capacity and effectively plan new capacity. Infrastructure to provide this capacity is capital-intensive so careful consideration of alternatives to infrastructure expansion must be considered. Consequently, railroads need to understand how operational practices and new technologies may affect rail line and network capacity. A comprehensive literature review of previous work on railroad capacity was conducted and the various metrics used to measure it described. An assessment of the major Class 1 railroads' capacity planning methods was conducted and their research needs identified. Operational factors influencing capacity are identified and described. Rail capacity is often measured using train delay as the metric so the categories and sources of delay were evaluated. Train type heterogeneity is a significant factor affecting railroad operating capacity. The relationship between delay, traffic volume and train type heterogeneity was investigated in a series of experiments using simulation analysis of trains operating on a single-track rail line. The specific types of conflicts and operational factors affecting delay were identified and quantified. Various operational and infrastructure methods to reduce train delay were analyzed and cost benefit analyses were conducted to determine their relative cost effectiveness. A qualitative analysis of the impact of positive train control (PTC), communications based train control (CBTC) and electronically controlled pneumatic (ECP) brakes was conducted. Each aspect of these technologies with the potential to affect capacity was identified and its effect evaluated under various implementation scenarios, including consideration of the conditions under which each technology has the potential to increase, reduce, or have no effect on capacity
    corecore