100 research outputs found

    Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe2 monolayer

    Get PDF
    This work has been supported by the State of Bavaria and the ERC (unlimit-2D) as well as the DFG via grants GRK 1570, KO3612/1-1 and SFB 689.Transition metal dichalcogenides represent an ideal testbed to study excitonic effects, spin-related phenomena and fundamental light-matter coupling in nanoscopic condensed matter systems. In particular, the valley degree of freedom, which is unique to such direct band gap monolayers with broken inversion symmetry, adds fundamental interest in these materials. Here, we implement a Tamm-plasmon structure with an embedded MoSe2 monolayer and study the formation of polaritonic quasi-particles. Strong coupling conditions between the Tamm-mode and the trion resonance of MoSe2 are established, yielding bright luminescence from the polaritonic ground state under non-resonant optical excitation. We demonstrate, that tailoring the electrodynamic environment of the monolayer results in a significantly increased valley polarization. This enhancement can be related to change in recombination dynamics shown in time-resolved photoluminescence measurements. We furthermore observe strong upconversion luminescence from resonantly excited polariton states in the lower polariton branch. This upconverted polariton luminescence is shown to preserve the valley polarization of the trion–polariton, which paves the way towards combining spin-valley physics and exciton scattering experiments.PostprintPeer reviewe

    Magnetic-field-induced splitting and polarization of monolayer-based valley exciton polaritons

    Get PDF
    he Würzburg group acknowledges support by the state of Bavaria. C.S. acknowledges support by the European Research council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (UnLiMIt-2D), Grant Agreement No. 679288. This work has been supported by the Fraunhofer-Gesellschaft zur Föderung der angewandten Forschung e.V. F.E. and H.K. gratefully acknowledge the financial support by the German Federal Ministry of Education and Research under Grant No. 13XP5053A. E.S. acknowledges support from the Grant of the President of the Russian Federation for state support of Young Russian Scientists, Grant No. MK-2839.2019.2 and RFBR Grant No. 17-52-10006. The work of A.K. is supported by Westlake University (Project No. 041020100118). S.T. acknowledges support from NSF, Grant No. DMR-1838443.Atomically thin crystals of transition metal dichalcogenides are ideally suited to study the interplay of light-matter coupling, polarization, and magnetic field effects. In this work, we investigate the formation of exciton-polaritons in a MoSe2 monolayer, which is integrated in a fully-grown, monolithic microcavity. Due to the narrow linewidth of the polaritonic resonances, we are able to directly investigate the emerging valley Zeeman splitting of the hybrid light-matter resonances in the presence of a magnetic field. At a detuning of -54.5 meV (13.5 % matter constituent of the lowerpolariton branch), we find a Zeeman splitting of the lower polariton branch of 0.36 meV, which can be directly associated with an excitonic g factor of 3.94±0.13. Remarkably, we find that a magnetic field of 6 T is suffcient to induce a notable valley polarization of 15 % in our polariton system, which approaches 30% at 9 T. This circular polarization degree of the polariton (ground) state exceeds the polarization of the exciton reservoir for equal magnetic field magnitudes by approximately 50%, which is a clear hint of valley-dependent bosonic stimulation in our strongly coupled system in the sub-threshold, fluctuation dominated regime.PostprintPeer reviewe

    Cutaneous lesions of the nose

    Get PDF
    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated

    Valley coherent exciton-polaritons in a monolayer semiconductor

    Get PDF
    Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe2 in an optical microcavity, forming part-light-part-matter exciton-polaritons. We demonstrate optical initialization of valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45° at B = 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures

    What Electrophysiology Tells Us About Alzheimer’s Disease::A Window into the Synchronization and Connectivity of Brain Neurons

    Get PDF
    Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer’s disease (AD), despite a surge in recent validated evidence. This Position Paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity reflecting thalamocortical and cortico-cortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies

    Valley-addressable polaritons in atomically thin semiconductors

    Get PDF
    The locking of the electron spin to the valley degree of freedom in transition metal dichalcogenide (TMD) monolayers has seen these materials emerge as a promising platform in valleytronics. When embedded in optical microcavities, the large oscillator strengths of excitonic transitions in TMDs allow the formation of polaritons that are part-light part-matter quasiparticles. Here, we report that polaritons in MoSe2 show an efficient retention of the valley pseudospin contrasting them with excitons and trions in this material. We find that the degree of the valley pseudospin retention is dependent on the photon, exciton and trion fractions in the polariton states. This allows us to conclude that in the polaritonic regime, cavity-modified exciton relaxation inhibits loss of the valley pseudospin. The valley-addressable exciton-polaritons and trion-polaritons presented here offer robust valley-polarized states with the potential for valleytronic devices based on TMDs embedded in photonic structures and valley-dependent nonlinear polariton–polariton interactions
    • …
    corecore