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ARTICLE

Valley coherent exciton-polaritons in a monolayer
semiconductor
S. Dufferwiel1, T.P. Lyons 1, D.D. Solnyshkov 2, A.A.P. Trichet3, A. Catanzaro1, F. Withers4,

G. Malpuech2, J.M. Smith3, K.S. Novoselov5, M.S. Skolnick1, D.N. Krizhanovskii1 & A.I. Tartakovskii 1

Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to

generate and read-out excitonic valley coherence using linearly polarized light, opening the

way to valley information transfer between distant systems. However, these excitons have

short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange

interaction. Here, we show that control of these processes can be gained by embedding a

monolayer of WSe2 in an optical microcavity, forming part-light-part-matter exciton-

polaritons. We demonstrate optical initialization of valley coherent polariton populations,

exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed

by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-

mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45°

at B= 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and

demonstrates the potential for engineering the valley pseudospin dynamics in monolayer

semiconductors embedded in photonic structures.
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I
n monolayers of semiconducting transition metal dichalco-
genides (TMDs) inversion symmetry breaking, strong spin-
orbit coupling and time reversal symmetry lead to the locking

of the electronic spin orientation to the specific valley, K or K′, at
the edge of the Brillouin zone1–3. This observation has led to
renewed interest in valleytronics with proposals to use mono-
layers of semiconducting TMDs for encoding information in their
electronic valley degree of freedom, similar to the approach
adopted for spins in spintronics. As with the formalism used for
spins, the evolution of the pseudospin can be depicted on a Bloch
sphere1,2,4, as shown in Fig. 1a, where the poles correspond to
states Kj i and K′j i with a well defined valley index, and the
equatorial plane corresponds to a linear superposition of these
states.

It has been expected that owing to the large spin-orbit split-
tings in TMDs, the valley pseudospin will be robust against
intervalley scattering1,2. Indeed, optical initialization of the valley
states ( Kj i and K′j i) by circularly polarized light has been
widely observed for excitons in TMDs such as MoS2, WS2, and
WSe2

2,5–8. In addition, retention of linear polarization has been
reported in WSe2 and WS2, indicating optical initialization of a
superposition of valley states Xj i= 1

ffiffi

2
p Kj i þ K′j ið Þ4,7,9–13 (see

Fig. 1a). However, the lifetime of such exciton valley coherence
has been estimated to be a few hundred femtoseconds, limiting
the coherent manipulation of the valley pseudospin4,11–13. The
dephasing has been linked to the random momentum-scattering
of excitons on disorder in the presence of the electron-hole
exchange interaction14,15, in a process known as the
Maialle–Silva–Sham (MSS) mechanism16. Another factor limiting
the ability to manipulate the valley coherence is the short exciton
lifetime (1–2 ps)4,11–13, which in principle can be overcome by
using the valley index of electrons or holes, with the disadvantage
of reduced optical control17,18.

Recently, an alternative approach enabling new ways to control
the valley pseudospin has emerged in experiments on monolayer
MoSe2 and MoS2 embedded in optical microcavities19–22, where
part-light-part-matter exciton-polaritons are formed due to
strong coupling between excitons and the cavity mode. The
polaritons exhibit a modified energy spectrum with upper and
lower polariton branches split by a few tens of meV and are
significantly less sensitive to disorder compared with the excitons.
Both effects lead to increased retention of valley polarization in
the polariton states19–22. In high-finesse tunable microcavities, as
in the present work, additional control of the valley pseudospin
dynamics can be gained by modifying the exciton-cavity detuning
(Δ ¼ Ec � EX0 , where Ec and EX0 are the cavity and exciton
energies, respectively), which changes the exciton and photon
fractions of the polariton states, thus influencing the polariton
radiative and valley depolarization times, as well as modifying
exciton energy relaxation20.

Here we show that by embedding monolayer WSe2 in a tunable
microcavity in the strong light-matter coupling regime, we can
optically generate valley coherent exciton-polaritons, which are
composed of excitons in a coherent linear superposition of valley
states which are in a further superposition of exciton and photon
states. We demonstrate that valley dephasing can be efficiently
circumvented via polariton formation, resulting in a threefold
enhancement of linear polarization degree observed for the upper
polariton branch (UPB) relative to the bare exciton. On the other
hand, the lower polariton branch (LPB) shows a linear polar-
ization degree that is strongly dependent on the exciton-photon
detuning. A dynamical model, incorporating cavity-modified
exciton relaxation, detuning-dependent polariton lifetimes, as
well as disorder scattering in the presence of the excitonic
longitudinal-transverse (LT) splitting, reproduces the exciton-
cavity detuning dependence of the linear polarization degree. The

model and experiments confirm the exciton LT-splitting as the
dominant mechanism for exciton dephasing. We then perform
coherent manipulation of the polariton valley pseudospin
through the application of a magnetic field in the Faraday geo-
metry, leading to a detuning-dependent rotation of the linear
polarization plane of polariton emission by angles up to 3 times
larger than the bare exciton. This discovery of valley coherent
polaritons, which may be non-resonantly optically generated and
readily fine-tuned to give desired valley coherence signatures in
luminescence, opens the way to unexplored non-linear polariton
phenomena utilizing valley coherence in TMDs, such as polariton
condensates, the optical spin Hall effect, optical spin switching
and polarization bistabilities23.

Results
Generation and control of exciton valley coherence. The WSe2
sample presented here, referred to as sample 1, consists of a single
monolayer placed at the surface of a planar dielectric distributed
Bragg reflector (DBR). Details and results from a further two
samples of identical structure are presented in Supplementary
Notes 2, 4, and 5. Characterization of sample 1 was performed
under non-resonant excitation at 1.946 eV at 4.2 K and photo-
luminescence (PL) spectra are shown in Fig. 1b. Features
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Fig. 1 Valley coherence in WSe2 excitons. a Bloch sphere representation of

the valley pseudospin vector. Valley polarized states ( Kj i and K′j i) lie on

the poles of the sphere while valley coherence is represented by a Bloch

vector oriented on the equator. The application of a perpendicular magnetic

field leads to precession of the pseudospin vector around the equator

due to the valley Zeeman effect, evolving from a position ΨB=0 to ΨB>0.

b Vertically (V) and horizontally (H) polarized spectra under vertically

linearly polarized excitation. Retention of injected valley coherence is

present for the neutral exciton, X0, with a polarization degree of 15%.

c Rotation of the linear polarization plane around the equator under

perpendicular magnetic fields of 8, 0, and −8 T, respectively. The black

arrow indicates the injected linear polarization. d The linear polarization

angle (θ) as a function of applied field. Blue circles are data points and dot-

dashed black line is a fit corresponding to θ= arctan(ΩBT2)/2 where ΩB is

the precession frequency given by ΩB= gμBB/ħ and T2 is the coherence

time. The fit corresponds to T2= 0.52 ± 0.05 ps
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associated with a neutral exciton (X0) and charged exciton (X−)
can be identified along with a large band of localized emitters
(LEs) at lower energy. Under vertically linearly polarized excita-
tion (Fig. 1b) the exciton resonance shows retention of linear
polarization with a polarization degree of around 15%, indicating
the optical initialization of a coherent superposition of valleys.
The lack of linear retention for the trion peak has been attributed
to the trion fine structure which leads to rapid dephasing of trion
coherence9. In this sample, a small negative polarization degree of
−2% is observed for the trion and is not attributed to valley
coherence. Clear retention of valley polarization under circularly
polarized excitation is also present (see Supplementary Note 3).

In order to demonstrate control of the valley coherent exciton
states we apply a magnetic field in the Faraday geometry4,12. This

lifts the degeneracy of the exciton valley states Kj i and K′j i due to
the valley Zeeman effect24,25, with the splitting given by ħΩB=

gμBB. Here, g is the exciton g-factor, measured to be −1.7 for this
sample (see Supplementary Note 3), ΩB is the Larmor frequency,
and B the applied magnetic field. After initialization, the linear
valley superposition state will evolve with time as Xj i=
1
ffiffi

2
p Kj ie�iΩBt=2 þ K′j ieiΩBt=2
� �

, reaching a new position on the
equator of the Bloch sphere with a corresponding rotation of the
linear polarization plane. Figure 1c shows the PL intensity as a
function of detection angle for applied fields of −8, 0, and +8 T
under vertical linear excitation, where clear rotation of the valley
coherent pseudospin in PL can be seen. The extracted rotation
angle as a function of magnetic field is shown in Fig. 1d. The fit
corresponds to θ= arctan(ΩBT2)/2 where T2 is the fitted
coherence time, defined as 1=T2 ¼ 1=2T1 þ 1=T�

2 where T1 and
T�
2 are the state lifetime and pure dephasing times, respectively.

T2 is extracted to be 0.52 ± 0.05 ps, in agreement with previous
reports4,11,12. The dependence of the rotation angle on g is
consistent with sample 2, in which g=−4.1 (Supplementary
Note 4).

Valley coherent exciton-polaritons in WSe2 monolayers. The
tunable zero-dimensional optical microcavity is formed by
introducing a top concave DBR into the optical path using piezo
nanopositioners and bringing the two mirrors to a total optical
cavity length of around 2.5 μm. A schematic diagram with
embedded monolayer is shown in Fig. 2a. The formed micro-
cavity is hemispherical and supports zero-dimensional Laguerre-
Gaussian modes. In this work only the coupling with the ground
state longitudinal mode is discussed. By changing the mirror
separation, the cavity resonance can be scanned across the exciton
resonance, allowing observation of a characteristic anti-crossing
which signifies the formation of exciton-polariton branches, as
shown in Fig. 2b. Fitting the peak positions with a coupled
oscillator model yields a Rabi splitting of 26.2 ± 0.1 meV (Fig. 2c).
Due to the low intrinsic electron doping present in the sample,
weak coupling is observed between the trion and cavity20,26,27, as
shown in Fig. 2d.

To probe retention of valley coherence in the polaritonic
system we excite at 1.946 eV with vertically linearly polarized
light, initially at zero exciton-cavity detuning. Figure 3a shows
the polarization resolved PL spectra co- and cross-polarized to
excitation. It is clear that both polariton branches show
retention of valley coherence, with the UPB displaying a larger
linear polarization degree than the LPB. In-situ tunability of the
cavity mode energy allows the degree of linear polarization to
be probed as a function of exciton-photon detuning, Δ, as
shown in Fig. 3b. At large negative detuning the LPB
polarization degree is a few percent and increases as the
exciton resonance is approached, reaching ≈25% at positive
detuning. In contrast, an increase in the UPB polarization
degree from 30 to >40% is observed as the detuning is changed
from −10 to +20 meV. PL spectra from the UPB at the
maximum probed detuning of +20 meV are shown in Fig. 3c,
displaying a linear polarization degree 3 times larger than the
bare exciton. A large exciton fraction and corresponding low PL
emission prevents extraction of the polarization degree in the
UPB (LPB) at strong negative (positive) detuning. Measure-
ments on two additional samples show similar behavior of the
linear polarization degree as a function of detuning (Supple-
mentary Notes 4 and 5). In order to confirm that the valley
coherence is inherited from the non-resonant excitation we
rotate the orientation of the linearly polarized pump and record
the detection angle dependent PL intensity. The resultant polar
plots are shown in Fig. 3d for vertical, diagonal, and horizontal
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Fig. 2 Strong exciton-photon coupling in WSe2 monolayers. a Schematic of

a WSe2 monolayer placed in an open hemispherical 0-dimensional

microcavity, maintained at 4.2 K in a LHe bath cryostat with

superconducting magnet. Piezo nanopositioners allow tuning of cavity

length. b Photoluminescence spectra measured as the cavity mode is

scanned across the exciton resonance, showing the formation of the lower

and upper polariton branches, LPB and UPB, respectively. Blue (green)

dashed curves guide the approximate peak positions of the LPB (UPB). c

Extracted polariton peak positions as a function of the exciton-photon

detuning. Ec (dotted line) is the energy of the tunable cavity mode. Dashed

lines are the energies of the exciton and trion. The green (blue) symbols

show spectral positions of the UPB (LPB) peaks. The red lines correspond to

a coupled oscillator model fit with a Rabi splitting of 26.2 ± 0.1 meV.

d Spectra corresponding to tuning the ground state mode through the trion

energy, demonstrating weak coupling between the cavity and trion. Blue

(red) dashed line indicates the energy of the trion (cavity mode)
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excitation, respectively, where clear retention of the injected
valley coherence is demonstrated.

Alongside the experimental data, Fig. 3b shows simulated
polariton polarization degrees (mathematical details of the
simulation are given in Supplementary Note 1). The simulation
is based on a model that takes into account coupling between Kj i
and K′j i valley excitons via the long range electron-hole exchange
interaction, which causes the exciton dispersion to split into
components with dipole moment parallel (L) and perpendicular
(T) to the in-plane wavevector. This LT-splitting is linearly
proportional to the k-vector outside the light cone, and gives rise
to an effective spin-orbit coupling which may be treated as an in-
plane magnetic field acting on the exciton valley pseudospin,
with field strength and orientation determined by the k-vector
(Fig. 4a)14–16,28,29. Scattering of the excitons due to disorder
creates a randomly varying field which leads to random valley
pseudospin precession and associated dephasing4,11–13. In the
model, linearly polarized excitation optically generates valley
coherent carriers which scatter to form high in-plane k-vector
excitons at the pump energy of 1.946 eV. Here, these excitons are
considered as occupying the highest energy states of a
momentum-dark reservoir, where they have a uniform pseudospin
orientation and an even distribution over the elastic circle. At
these energies, the spin-orbit coupling is large, which ensures
that the pseudospin precession about the k-dependent effective
magnetic field is much faster than the momentum scattering
induced by disorder. Consequently, the states with pump-induced
pseudospin parallel to the effective field remain 100 % polarized,
while states perpendicular rapidly drop to 0 % mean polarization.

Therefore, when integrating over the elastic circle, the reservoir
polarization degree averages to 50% very soon after optical
injection (Fig. 4b), despite a slow depolarization time limited by
inefficient disorder-assisted scattering at such high energy. At
lower energies, the reservoir polarization degree decreases because
of two reasons. Firstly, exciton states are no longer directly
populated by the pump, but also by multi-phonon scattering.
Secondly, disorder scattering gets faster and becomes comparable
to the pseudospin precession time. These two processes combine
to provide an increasingly efficient depolarization effect towards
the bottom of the reservoir (Fig. 4b). At some point during their
energy relaxation, excitons will scatter from the reservoir into the
UPB or LPB, as displayed in Fig. 4c. While some dephasing will
occur in the polariton states, it is inefficient due to their
insensitivity to disorder, reduced exciton fraction, and low k-
vector enforced by the 0-D cavity modes20. Upon radiative decay,
allowed by the photonic fraction of the polariton states, the degree
of linear polarization quantifies the level of preservation of valley
coherence during the relaxation process.

Under this interpretation, the detuning dependences of the
polarization degrees in Fig. 3b become clear. Considering first the
LPB, which is populated by excitons which have accumulated at
the bottom of the reservoir, a low polarization degree is expected
at negative detunings as the large energy separation between the
LPB and reservoir, along with a low excitonic fraction, suppresses
the relaxation rate WLPB. As detuning increases, and the exciton
fraction with it, WLPB correspondingly increases, allowing
reservoir excitons to populate the LPB over a shorter timescale,
reducing their exposure to spin-orbit induced dephasing. The
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Fig. 3 Valley coherence of exciton-polaritons in WSe2. a Polarization resolved photoluminescence spectra, at zero exciton-cavity detuning (Δ ¼ Ec � EX0 )

under vertically linearly polarized excitation showing clear retention of injected valley coherence in the polariton branches. Black (red) circles are vertically

(horizontally) polarized data points. Solid black and red lines are each a sum of two Lorentzian peaks fitted to the two polariton branches. b Linear

polarization degree as a function of exciton-photon detuning under vertically linearly polarized excitation for both the LPB (blue circles) and UPB (green

circles). The overlaid curves show the simulated polariton polarization degree calculated using the model discussed in the main text. c Polarization resolved

PL from the UPB at +20meV positive detuning, demonstrating robust valley coherence and a linewidth of 2.3 meV. d–f Polariton PL intensity as a function

of detection polarization angle for (d) vertical, (e) diagonal, and (f) horizontal linearly polarized laser excitation (indicated by black arrows) at zero exciton-

photon detuning. The data for LPB (UPB) are shown with blue (green) symbols. Radial axis is normalized intensity
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UPB, in contrast to the LPB, is always degenerate with some
portion of the parabolic exciton dispersion (Fig. 4a), allowing it to
be populated by direct disorder-associated scattering of reservoir
excitons. This relaxation pathway is fundamentally different to
that of the LPB, and explains the overall enhanced retention of
valley coherence seen in both the simulated and experimentally
observed UPB polarization degrees in Fig. 3b. Even at strong
negative detuning when the UPB is highly excitonic, it exhibits
robust valley coherence double that of the bare exciton, thanks to
the large 26 meV Rabi splitting ensuring that the UPB always
remains at least a few meV above the bottom of the exciton
reservoir. As detuning increases, the UPB moves to higher energy,
so its polarization degree reflects the changing pseudospin
relaxation dynamics in progressively higher energy reservoir
states. Initially moving from negative to positive detuning, the
polarization degree increases as the UPB becomes resonant with
higher energy reservoir excitons with stronger valley coherence.
At larger positive detuning, the UPB polarization degree saturates
as it approaches 50%, which corresponds to the momentum-
averaged reservoir polarization degree at high energies.

External manipulation of exciton-polariton valley coherence.
To demonstrate control of the valley coherent polariton popula-
tion we apply a magnetic field in the Faraday geometry as dis-
cussed previously for the bare exciton. Figure 5a, b show the
polariton PL as a function of detection angle under vertical
excitation and at exciton-photon detunings of −8 and +18meV,
respectively, for an applied magnetic field of B= 8 T. It is clear
from the plots that the induced rotation of the LPB is much larger
than that of the UPB, the latter being comparable to the bare
exciton rotation. In order to probe the effect of exciton-photon
detuning we plot the rotation angle of the LPB and UPB at a fixed
field of B= 8 T and sweep the detuning from −10 to +20 meV.
The resultant rotation angles are plotted in Fig. 5c where a clear
increase in the rotation angle is present for increasing negative
detuning. Significantly, the LPB rotation approaches 50° at −10
meV, a factor of almost 3 times larger than the bare exciton. At
detunings below −10 meV, the small orthogonal polarization of
the bare trion masks any coherent rotation of the LPB, as dis-
cussed in Supplementary Note 6.

Alongside the experimental data, Fig. 5c also shows simulated
polarization rotation angles, calculated from the model discussed
above regarding the linear polarization degree, with a modifica-
tion to include external magnetic field induced pseudospin
precession (details can be found in Supplementary Note 1). In
this case, a larger angle of rotation in the final state photon
reflects a slower overall relaxation pathway taken by the initial
state exciton. The UPB extracts high k-vector excitons from the
reservoir before significant pseudospin precession has occurred,
while the excitons which accumulate at the bottom of the
reservoir eventually populate the LPB at a rate determined by the
detuning. The majority of pseudospin vector rotation occurs in
the reservoir, due to the reduced exciton fraction of polaritons,
which leads to smaller Zeeman splitting and a lower precession
frequency than pure excitons.

Discussion
In conclusion, we report the generation and control of valley
coherent exciton-polaritons in a WSe2 monolayer embedded in a
microcavity. Our phenomenological model, together with
experimental measurements, confirms that the exciton LT-split-
ting, arising from the long-range Coulomb exchange interaction,
is the dominant mechanism of exciton dephasing. By utilizing the
strong light-matter coupling regime, we efficiently transfer exci-
tons exhibiting strong valley coherence from high to very low
momenta, where they populate polariton states which are
exceptionally resistant to valley dephasing. Simultaneously, we
probe the interplay between valley dynamics and energy-
momentum relaxation in otherwise dark exciton reservoir states
over a wide energy range, revealing that the fundamentally dif-
ferent relaxation pathways into the UPB and LPB result in their
distinct polarization responses to the externally controlled
exciton-cavity detuning. Furthermore, we demonstrate detuning-
dependent coherent manipulation of the polariton pseudospin
vector. While in this case magnetic fields were used, optical pulses
as used in13 would allow high speed rotation of the vector to an
angle which may be accurately externally controlled via the
exciton-cavity detuning.

This observation of robust valley coherence in the strong
coupling regime opens tantalizing possibilities to control the
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orbit coupling that may be treated as an in-plane magnetic field, which acts on the exciton valley pseudospin and has an orientation which depends upon

the exciton momentum. The upper and lower polariton branches (UPB and LPB) exist at lower energy, and are limited to k≈ 0, where the exchange

interaction is weak, shielding the polariton states from dephasing. b Simulated average linear polarization degree of exciton reservoir states as a function of

energy, at zero exciton-photon detuning. The dependence is discussed in the main text. Red dashed line indicates laser energy. c Close-up of the dispersion

of polariton and LT-split exciton states, at zero exciton-photon detuning. Dashed and dotted lines indicate relaxation pathways of excitons, with WUPB and

WLPB describing the relaxation rates from the reservoir into the polariton branches
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valley pseudospin by exploiting the various advantages polaritons
have to offer beyond excitons. For instance, polaritons are highly
coherent states which have extremely fast propagation speeds and
a low effective mass thanks to their photon fraction, yet they also
inherit strong interactions and non-linearity from their exciton
component. They have an extended spatial wavefunction com-
pared to excitons and hence feel a much reduced effect of the
short range disorder potentials currently found in TMD mono-
layers. Furthermore, polaritons are far more amenable to external
control than excitons, as their properties depend so heavily on the
specific design of the photonic structure in which they are
embedded. This is exemplified by our findings, where UPB states
with strong valley coherence are arbitrarily generated at any
chosen energy over a 30 meV range, while retaining PL linewidths
less than half the bare exciton linewidth, and remaining spectrally
isolated thanks to the modified photonic density of states
enforced by the cavity. Moreover, the cavity-enhanced polariton
lifetimes (5–10 ps, depending on the detuning) are several times
longer than the bare exciton (≈1 ps), allowing improved coherent
pseudospin manipulation using Stark pulses. We anticipate that
TMD-based polaritonic circuit elements may be used for valley-
tronic devices exploiting controlled polariton pseudospin
dynamics, as shown in this work. Such valley polaritonic systems
allow for the possibility of extended spatial propagation in two-

dimensional microcavities and waveguides, as well as the poten-
tial for response to electric fields (particularly for trion-polar-
itons) with low sensitivity to disorder and, importantly, a strong
non-linearity at high polariton densities.

Methods
Sample preparation. Monolayer sheets of WSe2 were obtained through
mechanical exfoliation of bulk crystals. A monolayer of WSe2 was transferred onto
the DBR surface using standard mechanical exfoliation and standard transfer
techniques. Bulk crystals were acquired from HQGraphene.

Experiments on several WSe2 monolayer samples. The results presented here
were reproduced by 2 additional samples of the same design. Results from samples
2 and 3 can be found in Supplementary Notes 4 and 5, respectively. The theoretical
model was applied to all samples, resulting in accurate fitting of the linear polar-
ization degree as a function of detuning in each case, with only minor adjustments
to model parameters. A list of parameters may be found in Supplementary Note 2.

Optical measurements. Optical measurements were performed with samples held
in a helium bath cryostat system at a temperature of 4.2 K. Top and bottom DBRs
were attached to XYZ nanopositioners with additional goniometer stages allowing
tilt control of the bottom DBR. Optical excitation of the bare monolayer was
possible by removing the top DBR from the optical path. All μ-PL experiments were
performed with a continuous-wave (cw) excitation using a 638 nm laser diode,
focused onto the sample with an achromatic lens. Polarization resolved measure-
ments were performed using a combination of linear polarizer and a quarter
waveplate in the excitation path, and quarter waveplate, half-wave plate and linear
polarizer in the collection path, allowing linearly and circularly polarized excitation
and detection. PL was collected by focusing onto a single mode fiber which was
guided into a 0.75m spectrometer and a high sensitivity charge-coupled device.

Microcavity. The tunable microcavity with embedded TMD monolayer is formed
using an external concave mirror to produce a zero-dimensional tunable
cavity30,31. The formed cavity schematic is shown in Fig. 2a with the monolayer
placed at an electric-field antinode, and nanopositioners are used to control the
cavity spectral resonance energy. The nominal radius of curvature of the concave
mirror is 20 μm leading to a beam waist on the planar mirror of around 1 μm30.

Data availability
All data relevant to this work is available on request to the corresponding author.
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