246 research outputs found

    ACUTE EFFECTS OF DENTAL APPLIANCES ON UPPER AND LOWER ISOKINETIC MUSCLE FUNCTION

    Get PDF
    The possibility that athletic performance can be affected by a person’s jaw posture during the activity has been of interest to sports practitioners for many years. Using established elbow and knee flexion/extension testing protocols on a calibrated isokinetic dynamometer (Biodex System 2, Shirley, NY), this study examined selected muscle function characteristics in male NCAA II college football players (n=18) under test conditions in which they wore a professionally-fitted dental appliance (PowerPlus) designed for optimal maxilla-mandibular spacing, a common “boil-and-bite”-type mouth guard (Shock Dr.), and conditions in which they were instructed to have their teeth touch while keeping the jaws relaxed (Relax) or clenched (Clench) without wearing any oral appliances. Results indicated a significant improvement in total work (+9.8%), peak torque/body weight (+10.5%), and average power (+11.25%) for elbow flexion in the PowerPlus relative to the Relax condition. Similarly, knee flexion total work for the PowerPlus was significantly higher compared to both Relax and Clench test conditions

    A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete

    Get PDF
    A quadtree-polygon scaled boundary finite element-based approach for image-based modelling of concrete fracture at the mesoscale is developed. Digital images representing the two-phase mesostructure of concrete, which comprises of coarse aggregates and mortar are either generated using a take-and-place algorithm with a user-defined aggregate volume ratio or obtained from X-ray computed tomography as an input. The digital images are automatically discretised for analysis by applying a balanced quadtree decomposition in combination with a smoothing operation. The scaled boundary finite element method is applied to model the constituents in the concrete mesostructure. A quadtree formulation within the framework of the scaled boundary finite element method is advantageous in that the displacement compatibility between the cells are automatically preserved even in the presence of hanging nodes. Moreover, the geometric flexibility of the scaled boundary finite element method facilitates the use of arbitrary sided polygons, allowing better representation of the aggregate boundaries. The computational burden is significantly reduced as there are only finite number of cell types in a balanced quadtree mesh. The cells in the mesh are connected to each other using cohesive interface elements with appropriate softening laws to model the fracture of the mesostructure. Parametric studies are carried out on concrete specimens subjected to uniaxial tension to investigate the effects of various parameters e.g. aggregate size distribution, porosity and aggregate volume ratio on the fracture of concrete at the meso-scale. Mesoscale fracture of concrete specimens obtained from X-ray computed tomography scans are carried out to demonstrate its feasibility

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes

    Get PDF
    Objective: To determine whether exposure to repetitive head impacts over a single season affects white matter diffusion measures in collegiate contact sport athletes. Methods: A prospective cohort study at a Division I NCAA athletic program of 80 nonconcussed varsity football and ice hockey players who wore instrumented helmets that recorded the acceleration time history of the head following impact, and 79 non–contact sport athletes. Assessment occurred preseason and shortly after the season with diffusion tensor imaging and neurocognitive measures. Results: There was a significant (p 5 0.011) athlete-group difference for mean diffusivity (MD) in the corpus callosum. Postseason fractional anisotropy (FA) differed (p 5 0.001) in the amygdala (0.238 vs 0.233). Measures of head impact exposure correlated with white matter diffusivity measures in several brain regions, including the corpus callosum, amygdala, cerebellar white matter, hippocampus, and thalamus. The magnitude of change in corpus callosum MD postseason was associated with poorer performance on a measure of verbal learning and memory. Conclusion: This study suggests a relationship between head impact exposure, white matter diffusion measures, and cognition over the course of a single season, even in the absence of diagnosed concussion, in a cohort of college athletes. Further work is needed to assess whether such effects are short term or persisten

    Modal satisfiability via SMT solving

    Get PDF
    Modal logics extend classical propositional logic, and they are robustly decidable. Whereas most existing decision procedures for modal logics are based on tableau constructions, we propose a framework for obtaining decision procedures by adding instantiation rules to standard SAT and SMT solvers. Soundness, completeness, and termination of the procedures can be proved in a uniform and elementary way for the basic modal logic and some extensions.Fil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemåtica, Astronomía y Física; Argentina.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fontaine, Pascal. Université de Lorraine; Francia.Fil: Fontaine, Pascal. National Institute for Research in Digital Science and Technology; Francia.Fil: Merz, Stephan. Université de Lorraine; Francia.Fil: Merz, Stephan. National Institute for Research in Digital Science and Technology; Francia.Ciencias de la Computació

    Expressing Belief Flow in Assertion Networks

    Get PDF
    Abstract. In the line of some earlier work done on belief dynamics, we propose an abstract model of belief propagation on a graph based on the methodology of the revision theory of truth. A modal language is developed for portraying the behavior of this model, and its expressiveness is discussed. We compare the proposal of this model as well as the language developed with some of the existing frameworks for modelling communication situations.

    Asperity level tribological investigation of automotive bore material and coatings

    Get PDF
    Choosing in-cylinder surfaces is complex. A well-chosen surface has low friction and wear. Conversely, poor oversight often leads to premature failure through wear and scuffing. Typically cylinder bore surfaces are selected experientially. This paper demonstrates the use of Atomic Force Microscopy in LFM mode, characterising typical cylinder bore materials and coatings. The approach uses integrated LFM with continuum contact mechanics. It evaluates the real contact area and effective elastic modulus of the surface, including the effect of any reactive surface film. Surface energy and shear strength, as well as the coefficient of friction in nanoscale interactions are also determined. These properties are measured for 6 cylinder bore materials, including for composite Nickel-Silicon Carbide and DLC, used for high performance engines

    Surface specific asperity model for prediction of friction in boundary and mixed regimes of lubrication

    Get PDF
    Machine downsizing, increased loading and better sealing performance have progressively led to thinner lubricant films and an increased chance of direct surface interaction. Consequently, mixed and boundary regimes of lubrication are prevalent with ubiquitous asperity interactions, leading to increased parasitic losses and poor energy inefficiency. Surface topography has become an important consideration as it influences the prevailing regime of lubrication. As a result a plethora of machining processes and surface finishing techniques have emerged. The stochastic nature of the resulting topography determines the separation at which asperity interactions are initiated and ultimately affect the conjunctional load carrying capacity and operational efficiency. The paper presents a procedure for modelling of asperity interactions of real rough surfaces, from measured data, which do not conform to the usually assumed Gaussian distributions. The model is validated experimentally using a bench top reciprocating sliding test rig. The method demonstrates accurate determination of the onset of mixed regime of lubrication. In this manner, realistic predictions are made for load carrying and frictional performance in real applications where commonly used Gaussian distributions can lead to anomalous predictions

    Logic, Probability and Action: A Situation Calculus Perspective

    Get PDF
    The unification of logic and probability is a long-standing concern in AI, and more generally, in the philosophy of science. In essence, logic provides an easy way to specify properties that must hold in every possible world, and probability allows us to further quantify the weight and ratio of the worlds that must satisfy a property. To that end, numerous developments have been undertaken, culminating in proposals such as probabilistic relational models. While this progress has been notable, a general-purpose first-order knowledge representation language to reason about probabilities and dynamics, including in continuous settings, is still to emerge. In this paper, we survey recent results pertaining to the integration of logic, probability and actions in the situation calculus, which is arguably one of the oldest and most well-known formalisms. We then explore reduction theorems and programming interfaces for the language. These results are motivated in the context of cognitive robotics (as envisioned by Reiter and his colleagues) for the sake of concreteness. Overall, the advantage of proving results for such a general language is that it becomes possible to adapt them to any special-purpose fragment, including but not limited to popular probabilistic relational models

    Boundary friction characterisation of a used cylinder liner subject to fired engine conditions and surface deposition

    Get PDF
    In cylinder friction contributes as a primary source of parasitic dissipations in IC engines. For future engines to become more efficient, with enhanced fuel economy and increased power output, accurate prediction of new designs is required over the full lifetime of an engine. The work carried out presents use of a local pressure coefficient of boundary shear strength of asperities value, taking into account the localised effects of surface texture, coating and surface deposition. XPS spectra analysis was also carried out to identify the surface depositions as a result of combustion, not previously taken into account during piston ring pack simulation. Friction was shown by simulation to drop by up to 30% between the compression and combustion stroke as a result of using a carriable coefficient of boundary shear strength of asperities. It was found that piston varnish on the liner corresponded to higher values of the pressure coefficient of boundary shear strength of asperities, therefore showing the importance of using real system components run under representative operating conditions or numerical analyses
    • 

    corecore