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Effect of head impacts on diffusivity
measures in a cohort of collegiate contact
sport athletes

ABSTRACT

Objective: To determine whether exposure to repetitive head impacts over a single season affects
white matter diffusion measures in collegiate contact sport athletes.

Methods: A prospective cohort study at a Division I NCAA athletic program of 80 nonconcussed
varsity football and ice hockey playerswhowore instrumented helmets that recorded the acceleration-
time history of the head following impact, and 79 non–contact sport athletes. Assessment occurred
preseason and shortly after the season with diffusion tensor imaging and neurocognitive measures.

Results: There was a significant (p 5 0.011) athlete-group difference for mean diffusivity (MD) in
the corpus callosum. Postseason fractional anisotropy (FA) differed (p 5 0.001) in the amygdala
(0.238 vs 0.233). Measures of head impact exposure correlated with white matter diffusivity
measures in several brain regions, including the corpus callosum, amygdala, cerebellar white
matter, hippocampus, and thalamus. The magnitude of change in corpus callosumMD postseason
was associated with poorer performance on a measure of verbal learning and memory.

Conclusion: This study suggests a relationship between head impact exposure, white matter dif-
fusion measures, and cognition over the course of a single season, even in the absence of diag-
nosed concussion, in a cohort of college athletes. Further work is needed to assess whether
such effects are short term or persistent. Neurology® 2014;82:63–69

GLOSSARY
AD5 axial diffusivity;CVLT-II5California Verbal Learning Test-II;DTI5 diffusion tensor imaging;DWI5 diffusion-weighted
imaging; FA 5 fractional anisotropy; GEE 5 generalized estimating equation; HIE 5 head impact exposure; MD 5 mean
diffusivity; NEX 5 number of excitations; ROI 5 region of interest; TBI 5 traumatic brain injury; TE 5 echo time; TR 5
repetition time; WRAT-4 5 Wide Range Achievement Test-4.

There is growing concern that head impacts sustained while playing contact sports may lead to a
variety of worrisome outcomes, including increased susceptibility to concussion, long-term cog-
nitive decline, and chronic traumatic encephalopathy.1–4

Studies of repetitive impacts not associated with diagnosed concussion are few and contradic-
tory. One study reported abnormal cognitive indices in season and postseason,5 while another
showed postseason cognitive improvements, probably related to practice effects.6 Our group7

failed to find large group differences in cognition at postseason assessments in collegiate contact
sport athletes; however, a significantly higher percentage of the contact sport group showed
worse-than-predicted postseason performance on a test of verbal learning, suggesting that a
subgroup of athletes are vulnerable to the cognitive effects of repetitive head impacts.

Diffusion-weighted imaging (DWI) methods have been used to probe white matter integrity,
particularly in mild and moderate traumatic brain injury (TBI).8–10 In athletes, work has focused
on individuals with concussions. For example, in a study of 10 concussed college students studied
with diffusion tensor imaging (DTI),11 the concussed group showed elevated mean diffusivity
(MD) in the left inferior longitudinal fasciculus and inferior fronto-occipital fasciculus. In another
report,12 concussed football players studied 1 week and 6 months after injury had elevated
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fractional anisotropy (FA) and axial diffusivity
(AD) in some brain regions (e.g., corpus
callosum). However, another study13 found no
differences in FA or MD in college athletes
1 month after concussion. Few publications
focus on the effects of repetitive head impacts
in athletes without concussion.14

This study tested the hypothesis that partic-
ipation in a season of a contact sport in the
absence of a diagnosed concussion is associated
with changes in white matter diffusion meas-
ures and that the degree of change is correlated
with head impact exposure (HIE) and cogni-
tive performance.

METHODS Participants. Two athlete cohorts enrolled

between 2007 and 2011 at Dartmouth College underwent pre-

season and postseason neuroimaging. The contact sport cohort

consisted of football players and ice hockey players (men and

women). The non–contact sport cohort consisted of varsity ath-

letes on a variety of teams, including track, crew, and Nordic

skiing. Study participation was offered to all members of these

contact and noncontact teams. We excluded athletes with a his-

tory of concussion during the index season, significant systemic

medical illness, or current psychiatric disorders. For the non–

contact sport cohort, we also excluded those with self-reported

prior concussion. Some participants were also included in our

previous report of the cognitive effects of repetitive head impacts.7

Standard protocol approvals, registrations, and patient
consents. The protocol was approved by the institutional review
board at Dartmouth and all participants gave written informed

consent.

Imaging methods. Scans were acquired on a research-dedicated
3T Philips Achieva magnet. This 3.0T system has the high-

performance Quasar Dual gradient set with strengths up to

80 mT/m and slew rates up to 200 T/m/second and an anatomical

landmark–based longitudinal repositioning system (SameScan/

SmartScan). A Philips 8-channel SENSE head coil was used.

Diffusion-weighted imaging. DWI was carried out using 46

diffusion directions (b 5 1,000 seconds/mm2), optimized via

electrostatic repulsion to achieve a homogeneous distribution

over a sphere,15 plus one volume without diffusion gradients

(b5 0). The imaging resolution was 23 23 2 mm3, echo time

(TE) was 76 ms, repetition time (TR) was specified as “shortest”

(roughly 8,100–8,600 ms), number of excitations (NEX) 5 1,

and SENSE factor5 2.5. DWI acquisition time was 8.1 minutes.

Calculation of tensors was carried out using ExploreDTI

v. 4.8.2,16,17 using the RESTORE algorithm18 plus optional pro-

cessing for correction of bulk motion.

FA and MD were chosen as our primary diffusivity measures.

Both FA and MD give an indication of axonal function and are

potential injury biomarkers. While AD and radial diffusivity have

been reported in the TBI literature and can be interpreted as

markers of axonal integrity (e.g., reference 14), they have been

shown to be difficult to interpret in areas of crossing fibers and

other complex architectures.19 Prior to data analysis, we identified

the corpus callosum as our primary region of interest (ROI) based

on the density of long white matter tracts and previous work

showing vulnerability of this region to diffuse axonal injury,

which is often assumed to underlie the effects of mild TBI/con-

cussion.20 Six additional brain regions were chosen for planned

secondary analyses: cerebral white matter, brainstem, thalamus,

hippocampus, amygdala, and cerebellar white matter.

Anatomic reference. An MPRAGE (magnetization-prepared

rapid acquisition with gradient echo) T1-weighted sequence

was used in each session with the following parameters: 140 con-

tiguous 1.2-mm sagittal slices, TR: 6.8 ms, TE: 3.3 ms, inversion

time: 852.9 ms, turbo field echo prepulse delay: shortest, flip

angle: 8°, NEX: 1, bandwidth/pixel: 241, field of view: 256 mm,

matrix 256, 1.03 1.0 mm in-plane resolution. This series balances

scan time, signal-to-noise ratio, high gray/white tissue contrast, and

high spatial resolution (scan duration: 8:55 minutes).

Subject-specific ROI analysis. FreeSurfer21 was used to carry

out a subcortical segmentation of each subject’s anatomic refer-

ence scans and to create the preselected ROIs. To maximize the

expected accuracy and eliminate any session bias in the ROIs,

FreeSurfer’s longitudinal stream22 was employed to create a lon-

gitudinally unified template space and label image23 for each sub-

ject using a robust registration.24 For each DTI scan, SPM5’s

coregistration function was used to realign the skull-stripped

FreeSurfer unified anatomy image for the subject to the skull-

stripped b 5 0 diffusion image for the session, and to apply the

same transformation to propagate the subjects’ label maps to that

DTI scan space. Default SPM5 settings were used except for the

specification of nearest neighbor interpolation to preserve label

values.

Imaging quality control. Quality assessments consisted of a

combination of manual review of diffusion images and tests in

ExploreDTI and MATLAB v. R2010b/7.11 based on reference

17. Of the 287 scans acquired, 10 helmet athlete scans were unus-

able due to scanner configuration issues, 1 scan failed quality

checks, and a further 4 scans could not be successfully processed

in ExploreDTI, resulting in 272 usable scans.

Assessment of cognition. Participants completed a 2.5-hour

battery of standardized neuropsychological tests at both time

points. As in our previous work,7 the California Verbal Learning

Test-II (CVLT-II) Total Acquisition Trials 1–525 was chosen as

the primary cognitive outcome measure and the Wide Range

Achievement Test-4 (WRAT-4) reading test was used as a proxy

for general intelligence.

Biomechanical measurements. Study participants wore

helmets instrumented with HIT System technology (Riddell,

Inc., Rosemont, IL; Simbex, Lebanon, NH) to record HIE

during all team-organized practices and games. This technology

has been described previously in the literature, including detailed

descriptions of its development,26,27 measurement accuracy,28,29

and on-field performance.29–31 In brief, instrumented helmets are

fitted with a modified helmet liner that positions an array of

6 single-axis accelerometers against the head to enable in vivo

head acceleration measurement (see figure 1). If any accelerom-

eter exceeds a team-established threshold (14.4g in this study),

40 ms of data (8 ms pretrigger and 32 ms posttrigger) are recorded

and transmitted wirelessly to a sideline laptop computer.

Accelerometer data are then processed using a simulated an-

nealing algorithm to solve for acceleration at the head center

of gravity. Prior to data analysis, 4 biomechanical variables

were chosen as representative indicators of HIE for each

player: number of head impacts, the 95th percentile peak

linear acceleration, the 95th percentile peak rotational accel-

eration, and the 95th percentile HITsp (derived from peak

acceleration, impact duration, and impact location). Two time
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epochs were chosen to capture both cumulative effects of a season

of HIE (Hseason) and effects of recent HIE (Hrecent). Such an

approach takes into account that directional change in white

matter metrics can vary as a function of the interval from the

precipitating injury and variation across subjects in the end-of-

season to postseason imaging interval.7,10,32,33

Statistical analyses. Distributions for cognitive performances

and HIE were examined for outliers and distributional character-

istics. Comparison of contact and non–contact sport athletes used

means and t tests for continuous variables and x2 tests for cate-

gorical variables with respect to basic demographic information.

Contact vs noncontact athlete comparisons. Two general-

ized estimating equation (GEE) models were used to test the

hypothesis that contact sport and non–contact sport athletes differed

significantly with respect to the diffusivity outcome measures (FA

and MD). The models included visit type (preseason vs postseason),

age, WRAT-4 reading score, scanner epoch (accounts for potentially

significant changes in the scanner environment, such as scanner

upgrades over the 4-year course of the study), and subject motion

(using motion parameters generated by ExploreDTI in its affine-

based motion correction).

Evaluation of biomechanics predictors in contact sport
athletes. To assess for relationships between HIE variables and

diffusivity measures, 2 related GEE models were used (FA and

MD). These models used the contact athletes only and included

the 4 prespecified biomechanical variables assessed over the 2 time

frames (season and 14 days prior to postseason scan).

Evaluation of functional significance of diffusivity measures.
To characterize relationships between diffusivity measures and cog-

nitive function, we assessed the correlation between postseason dif-

fusivity measures and the CVLT-II,25 a test of verbal learning and

memory using a regression-based z score approach.7,34 The non-

contact athlete data were used to establish a predicted range of

postseason performance; z scores representing change (preseason

to postseason) for the CVLT-II were computed using multiple

regression analysis with adjustment for test-retest interval and

WRAT-4 reading score. As in our prior work,7 a value of z ,

21.5 (i.e., follow-up test scores 1.5 or more SDs lower than the

predicted value) served as an indicator of significantly poorer-than-

expected postseason performance. Clinically, this represents a

meaningful change in an individual relative to his or her own base-

line or a clinically significant impairment relative to normative data

(a decline of this magnitude is expected in less than 7% of the

normal population).

RESULTS Participants. Results include 272 scans
from 159 athletes (123 scans of 80 contact sport ath-
letes and 149 scans of 79 non–contact sport athletes).
Not all subjects returned for postseason scans. Five
contact sport athletes were dropped from the postsea-
son analysis because they sustained a concussion dur-
ing the season. The proportion of subjects who
returned for postseason scans was similar across
groups: 88% of noncontact controls and 83% of con-
tact sport athletes. Table 1 summarizes demographic
variables for the contact and noncontact athletes. The
2 groups showed statistically significant differences in
age (p5 0.013) and inWRAT-4 reading (p, 0.001).
Although neither difference is clinically meaningful,
these variables were included as covariates in the
GEE models. Athletes with and without matched pre-
season and postseason assessments did not differ with
respect to age, sex, handedness, or preseason CVLT-II
scores.

Head impact exposure. Descriptive statistics for the
number of head impacts sustained and the player-
specific 95th percentile peak linear acceleration, peak
rotational acceleration, and HITsp are summarized in
table 1. As noted, HIE measures were aggregated over
a single season of play as well as within 14 days of the
postseason scan.

Imaging.There was a main effect of athlete group (p5
0.036) for MD in the corpus callosum (see figure 2). In
addition, postseason FA andMD differed across groups
in the amygdala (p , 0.001, p 5 0.042). There were
no other significant differences in FA or MD, including
differences between preseason and postseason time
points in either group.

Relationship of head impacts and white matter metrics.

For each HIE measure, season values were tested with
and without recent values as covariates. Table 2 sum-
marizes the findings. There was a significant association
between head impact metrics and postseason white mat-
ter measures in a number of regions, including the cor-
pus callosum (number of hits during the prior 14-day
window), amygdala (seasonal 95th percentile rotational
acceleration and HITsp), cerebellum (hits over both the
entire season and the 14-day window, seasonal and
recent 95th percentile linear and rotational acceleration,
and seasonal 95th percentile HITsp), and hippocampus
(hits over the entire season and 95th percentile linear and
rotational accelerations over the recent 14-day window).

Figure 1 Accelerometer locations within the instrumented football and hockey
helmets

Accelerometer locations (indicated by red circles) within the instrumented football and
hockey helmets record acceleration at 6 locations on the head. Raw acceleration data for
each recorded event are processed using an optimization algorithm to obtain linear and rota-
tional acceleration about the head center of gravity.

Neurology 82 January 7, 2014 65



Relationship of postseason cognitive performance to

white matter metrics. A subgroup of the athletes (con-
tact 20% vs noncontact 11%) performed worse than
predicted (defined by scores .1.5 SDs below the
predicted score) at the postseason assessment on the
CVLT-II. This group showed more change in MD in
the corpus callosum (p 5 0.017) relative to the nor-
mally performing group of athletes, but did not differ
meaningfully from the remainder of the group in
other respects (table 3).

DISCUSSION This large prospective cohort study
suggests there are differences in white matter diffu-
sion metrics between college contact and non–contact
sport varsity athletes when studied across a single sea-
son. Furthermore, the relationship between head
impact measures and white matter diffusion measures
suggests a causal relationship between the magnitude
and timing of head impacts and change in white mat-
ter measures in some brain regions. The observation
that the group with poorer-than-predicted postseason
performance on a measure of verbal learning and
memory had higher changes in diffusivity measures
(MD) in the corpus callosum suggests that the
observed white matter changes may have some func-
tional significance.

It is important to emphasize that our cohort of
contact sport athletes were not diagnosed with a con-
cussion during the index season. Not surprisingly, the
absolute magnitude of the group differences, although
statistically significant, is small, and less than what has
been reported in the literature for clearly defined TBI.
For example, one study of 57 moderate and 26 mild
TBIs 5–14 days postinjury showed differences of
approximately 0.06 in corpus callosum FA between
controls and the TBI group.33 Another study of 60
individuals with mild TBI and 34 controls found a
nonsignificant difference of 0.001 for FA in the genu
of the corpus callosum 6–8 weeks postinjury and an
MD difference in the splenium of the corpus callosum,
which was 0.781 for TBIs vs 0.767 for controls (0.014
difference, p 5 0.050).35 Direct comparisons of DTI
measures for nonconcussed athletes have not been
reported previously, to our knowledge.

There are several limitations to this study worth
noting. The reproducibility of FA and MD in DTI
is sufficient to track relatively small changes longitu-
dinally in a single subject,36 but subject bulk and
physiologic motion, image registration, and inherent
noise combine to make assessing the precision with
which comparisons can be made in any individual
case difficult. Although this is a large sample, it is
drawn from a single setting and thus may not be
representative of other athlete populations, such as
professional athletes or youth populations, due to
differences in brain maturity, neck strength, training,

Table 1 Demographics and head impact exposure (HIE) for the season and
within 14 days of postseason scan

Noncontact Contacta

Age

Mean (SD) 19.5 (1.3) 19.0 (1.1)

Range 18–22 18–22

Sex

Male 56 64

Female 23 16

Handedness

Right 75 71

Left 4 9

WRAT-4 reading (scaled score)

Mean (SD) 117.5 (9.7) 111.5 (10.2)

Range 96–142 92–142

CVLT-II (preseason): 65 contact, 79 noncontact

Mean (SD) 59.2 (7.1) 58.0 (8.1)

Range 44–74 31–77

CVLT-II (postseason): 58 contact, 70 noncontact

Mean (SD) 62.6 (8.3) 59.3 (8.0)

Range 33–76 39–76

Number of impacts (season HIE)

Mean (SD) 503 (419)

Range 9–2,046

Number of impacts (14-day HIE)

Mean (SD) 20.2 (47)

Range 0–240

Linear acceleration (95th) (season HIE)

Mean (SD) 54.8 (11.4)

Range 33.4–88.3

Linear acceleration (95th) (14-day HIE)

Mean (SD) 18.5 (26.9)

Range 0–90.4

Rotational acceleration (95th) (season HIE)

Mean (SD) 2,552 (635)

Range 1,481–4,540

Rotational acceleration (95th) (14-day HIE)

Mean (SD) 954 (1,455)

Range 0–5,548

HITsp (95th) (season HIE)

Mean (SD) 30 (7.2)

Range 16.9–52.9

HITsp (95th) (14-day HIE)

Mean (SD) 10.5 (15.8)

Range 0–60.9

Abbreviations: CVLT-II5 California Verbal Learning Test-II; WRAT-45Wide Range Achieve-
ment Test-4.
The 2 groups do not differ on CVLT-II at preseason (t5 0.90, p5 0.37), but they do differ at
postseason (t 5 2.27, p 5 0.025).
a HIE applicable to contact athletes only.
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and exposure metrics. Although it is common to
ascribe changes in diffusion metrics to abnormalities
in “white matter integrity,” what this actually means
and its functional significance have not been fully
established. We believe our findings are consistent
with a link between white matter diffusion measures,
HIE, and cognition, but there is significant variability
among the athletes. It would be premature at this
point to use these techniques to identify individual
at-risk athletes.

Of note, we find neither preseason group differen-
ces nor large-scale, systematic differences across
diffusion measures postseason. These findings are
somewhat reassuring in the context of the recent con-
cern about long- and short-term consequences of con-
tact sports and recent reports of white matter changes
in concussed athletes and retired National Football
League players.37 Furthermore, these athletes typically
have been exposed to many prior seasons of repetitive
head impacts, suggesting the possibility that season-
induced changes may normalize during the off-season.
This is consistent with the observation that thousands
of individuals have played contact sports for many
years without developing progressive neurodegenera-
tive disorders.

Nevertheless, these findings suggest that some brain
regions in some athletes are altered by repetitive
impacts over the course of a season, even in the absence
of diagnosed concussion, that the frequency and mag-
nitude of the impacts can modulate these white matter
changes, and that these changes may be related to
verbal learning and memory. Adequate performance
on the CVLT-II is best conceptualized as being sub-
served by a distributed circuitry with nodal points in
bifrontal, medial temporal, and cerebellar cortices,
along with attendant white matter connections.38,39

Thus the finding of alterations in white matter metrics
of medial temporal, cerebellar, and callosal regions
(table 2) associated with a season of repetitive impacts
is consistent with the CVLT-II findings.

It is also possible that our ability to detect subtle
changes in white matter with current DTI technology
may not be uniformly sensitive across all brain
regions. For example, although some have postulated
that triangulation of biomechanical forces to the
upper brainstem and midbrain regions may generate
the alteration of consciousness associated with con-
cussive injury,40 we did not find significant associa-
tions between biomechanical force parameters and
changes in white matter metrics in the brainstem. It
is also important to consider that TBI-related changes
in white matter may vary as a function of the interval
from injury to neuroimaging assessment. For example,
some studies have reported elevated FA in some brain
regions within days of injury, whereas studies with
longer injury-to-imaging intervals (weeks or years)
more typically have shown reduced FA.7,10,32,33 In the
event that individuals are getting repetitive head im-
pacts, as in our cohort, some brain regions and white
matter changes may be in different phases (diffusivity
increasing in some regions, decreasing in others) de-
pending on the time course of HIE and its relationship
to the time of imaging. Our analytic approach, which
looked at both season effects and recent (14-day)
effects and covaried for imaging interval, was chosen
in an effort to address these issues. Nevertheless, these

Figure 2 Mean diffusivity values for the corpus callosum of noncontact and
contact athletes preseason and postseason

Examination of the mean diffusivity values for the corpus callosum of noncontact and con-
tact athletes preseason and postseason indicates amain effect of athlete group (p50.036).

Table 2 Association of HIE and postseason FA or MD

ROI Predictor Effect

Corpus callosum Recent hits MD 21.59E-04 (p 5 0.001)

Amygdala Season 95th HITsp MD 14.38E-04 (p 5 0.019)

Season 95th linear MD 11.99E-04 (p 5 0.050)

Season 95th rotation MD 15.12E-06 (p 5 0.023)

Cerebellar white matter Season hits (w/recent) FA 16.05E-06 (p 5 0.014)

Recent hits FA 26.23E-05 (p 5 0.035)

Season 95th HITsp (w/recent) FA 11.35E-04 (p 5 0.014)

Season 95th linear (w/recent) FA 16.59E-05 (p 5 0.021)

Recent 95th linear FA 27.90E-05 (p 5 0.022)

Season 95th rotation (w/recent) FA 11.53E-06 (p 5 0.022)

Recent 95th rotation FA 21.47E-06 (p 5 0.028)

Hippocampus Season hits FA 14.52E-06 (p 5 0.025)

Season hits (w/recent) FA 15.43E-06 (p 5 0.038)

Recent 95th linear MD 12.29E-04 (p 5 0.046)

Recent 95th rotation MD 14.62E-06 (p 5 0.033)

Abbreviations: FA 5 fractional anisotropy; HIE 5 head impact exposure; MD 5 mean diffu-
sivity; ROI 5 region of interest.
Predictors tested were of 3 types: whole season values alone, whole season values
controlling for recent values, and recent values (adjusted for whole season values).
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time effects may be obscuring additional findings, and
we cannot exclude the possibility that detrimental ef-
fects on white matter might be detected with a longer
prospective design.

The observation that there is a subgroup of ath-
letes with differential susceptibility to repetitive im-
pacts raises the question of what underlying factors
might account for this. Additional studies are war-
ranted given the public health implications.
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