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Abstract

A quadtree-polygon scaled boundary �nite element-based approach for image-based

modelling of concrete fracture at the mesoscale is developed. Digital images represent-

ing the two-phase mesostructure of concrete, which comprises of coarse aggregates and

mortar are either generated using a take-and-place algorithm with a user-de�ned ag-

gregate volume ratio or obtained from X-ray computed tomography as an input. The

digital images are automatically discretised for analysis by applying a balanced quadtree

decomposition in combination with a smoothing operation. The scaled boundary �nite

element method is applied to model the constituents in the concrete mesostructure.

A quadtree formulation within the framework of the scaled boundary �nite element

method is advantageous in that the displacement compatibility between the cells are
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automatically preserved even in the presence of hanging nodes. Moreover, the geometric

�exibility of the scaled boundary �nite element method facilitates the use of arbitrary

sided polygons, allowing better representation of the aggregate boundaries. The com-

putational burden is signi�cantly reduced as there are only �nite number of cell types

in a balanced quadtree mesh. The cells in the mesh are connected to each other using

cohesive interface elements with appropriate softening laws to model the fracture of

the mesostructure. Parametric studies are carried out on concrete specimens subjected

to uniaxial tension to investigate the e�ects of various parameters e.g. aggregate size

distribution, porosity and aggregate volume ratio on the fracture of concrete at the

meso-scale. Mesoscale fracture of concrete specimens obtained from X-ray computed

tomography scans are carried out to demonstrate its feasibility.

Keywords: scaled boundary �nite element method; meso-scale; fracture; quadtree; polygon;

image-based analysis; concrete

1 Introduction

When concrete is observed at shorter length scales, it can be progressively broken down into

individual constituents. The subject of interest in this study is the behaviour of concrete at

the mesoscale. At the mesoscale, concrete can be thought of as a multi-phased material that

comprises of the cement paste (mortar) surrounding the coarse and the �ne aggregates leading

to a highly heterogeneous structure. The heterogeneity of concrete and the forces binding

its various phases are normally overlooked when analysing concrete at the macroscopic level.

The simplifying assumption of concrete as a uniform homogeneous material neglects many of

the key aspects such as the aggregate shape and the size distribution which play a signi�cant

role in determining its macroscopic strength and fracture behaviour. These aspects can be

better studied when concrete is analysed at the mesoscale.

The motivation to further comprehend the complex damage initiation of microcracks,

their progressive development into major cracks leading to failure of concrete and how the

morphology and the content and/or distribution of the di�erent phases of the concrete at the

mesoscale relate to the physical properties observed at the macroscale mechanical responses

has seen numerous e�ort devoted towards the modelling of concrete at the mesoscale e.g.

[3, 50, 54, 48, 32, 16]. These approaches can be identi�ed by the manner in which the

heterogeneity of concrete at the mesoscale is represented. The �rst approach adopts an

implicit representation of the di�erent phases of concrete at smaller length scales through

a description of stochastic �elds of material properties a�ecting the behaviour of concrete

within the computational domain [4, 55, 54]. The second approach explicitly discretises the
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various phases present in the concrete mesostructure. The behaviour of the concrete is then

modelled using a suitable computational procedure. The explicit approach will be the focus

of this study, particularly on the computational procedure that is being adopted. Many

types of computational models have been reported in the literature. These include lattice

models [36, 35, 13], discrete element models [27, 25, 45] and continuum models [51, 16, 32].

The lattice models involve the use of structural �nite elements e.g. beams and truss to

form a lattice network to represent the concrete mesostructure. The heterogeneity of con-

crete is modelled by assigning di�erent material properties to the beam elements (mortar or

aggregate) depending on the elements' positions with reference to the concrete mesostruc-

ture. Lattice models have been successfully applied to model the failure of concrete at the

mesoscale for various types of loadings under both two- and three-dimensional conditions

[35, 19, 38, 10, 37]. Fracture is modelled through various approaches e.g. removing elements

that exceed the tensile strength of concrete [35], particle lattice models [7] and �exible nodes

[10]. Lattice models o�er computational simplicity due to the use of simple beam theories

for the underlying lattice whereas its disadvantages include the need of a very �ne mesh to

accurately represent the morphology of the concrete mesostructure and to avoid mesh bias

in the solutions.

The discrete element method models the behaviour of materials through the use of discs

and spheres [6]; and polygonal particles [11]. The force transfer between the particles is

achieved through contact interaction. The motion of the particles is resolved using rigid body

dynamics. To model the heterogeneity of concrete, each discrete element is assigned di�erent

material properties depending on whether they belong to the aggregate or mortar phase,

similar to the lattice models. Inter-particle spring elements are used to model the cohesion

between the various phases in the mesostructure. The spring elements enable separation

between particles when the internal force in the spring exceeds the bond strength. In this

way, fracture within a meso-scale structure can be modelled. The application of the discrete

element method to model concrete fracture at the mesoscale has been reported in many

instances e.g. [27, 25, 45]. Similar to the lattice models, the advantage of discrete element

models lie in their simplicity but incur a penalty in the required size of the computational

model. Moreover, the discrete element models require extensive calibration of the bond

strength and inter-particle contact sti�ness prior to numerical simulations.

On another front, continuum models are generally based on the �nite element method

(FEM) although investigations based on peridynamics has also been reported [53]. The

entire concrete meso-structure (aggregate and mortar) is explicitly discretised using standard

�nite elements with di�erent material properties assigned to the di�erent phases in the

computational domain. The fracture in the meso-structure can be explicitly modelled using
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interface elements e.g. [23, 40, 48, 32, 16] or implicitly modelled using damage models e.g.

[38, 39, 2, 47] or enrichment functions via the extended FEM e.g. [9].

Interface elements model the fracture of the concrete mesostructure through nonlinear

traction-separation laws that characterise the bond between the mortar and the aggregate

phases. The interface elements connect the continuum elements and are pre-inserted into the

�nite element mesh prior to the numerical simulations. As a consequence, fracture is allowed

only along the element interfaces. Di�erent types of interface elements have been formulated

including zero-thickness quadrilateral elements [48] in two dimensions, prismatic elements

(6-nodes or 8-nodes) in three dimensions [43, 44], and continuum elements with high aspect

ratio formulated from the kinematics of the continuum strong discontinuity approach [32].

When damage models are employed, fracture is modelled within the continuum elements.

A damage variable associated with the degradation of the material that acts as a sti�ness

reduction factor when microcracks and voids coalesce and propagate is de�ned to model the

failure process in the mesostructure. The challenge in the application of damage models

involve the modelling of the very thin region at the interface between the matrix and the

aggregate. A high mesh density is usually required in the vicinity of these regions [24]. In

the extended FEM, the fracture in concrete is de�ned through nodes that are enriched with a

Heaviside function to describe the discontinuity between the crack faces. Traction-separation

laws are de�ned across the elements enriched by the Heaviside function to model the cohesion

along the interfaces [33].

This study describes a continuum approach coupled with zero-thickness cohesive inter-

face elements to model mesoscale fracture of concrete. The scaled boundary �nite element

method (SBFEM) [42] is used to discretise the aggregates and the mortar phases in the con-

crete mesostructure. A mesh fragmentation process is then applied so that zero-thickness

interface elements can be inserted along the cell boundaries. This approach di�ers from that

developed by Huang et al. [17] and Wang et al. [49] in which a single SBFEM is employed

to discretise the aggregates whereas the mortar is discretised with standard �nite elements

[17] or polygonal scaled boundary �nite elements [49]. Instead, a quadtree decomposition

in combination with polygon meshes within the framework of the SBFEM [26] is adopted.

Quadtree meshes are particularly suitable for the implementation with the SBFEM, because

the presence of hanging nodes do not impose any restriction on the SBFEM. Each cell is

modelled as if it were an arbitrary sided polygon similar to the approach of Tabarraei and

Sukumar [46]. The �exibility to using arbitrary sided polygons also enables accurate repre-

sentation of the problem geometry at the interfaces between the aggregate and the matrix.

The application of quadtree decomposition leads to an e�cient approach for mesh genera-

tion from digital images of concrete mesostructures [56, 21, 34]. Due to its ability to discretise
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the geometric features of di�erent scales e�ciently, quadtree meshes avoid the generation

of very �ne meshes when compared with pixel-based approaches e.g. [15, 31]. Moreover,

the whole image-based mesh generation process is fully automatic and signi�cantly reduces

the time and human e�ort required to convert an image to a mesh suitable for analysis.

Quadtree meshes also facilitate e�cient computations due to the limited patterns of cells in

the mesh. These can be pre-computed, stored in the memory and quickly extracted when

required. This signi�cantly limits the required number of additional computations to only

the polygon shaped cells situated along the boundary between two dissimilar materials.

This paper is organised as follows: Section 2 describes the procedure in which digital im-

ages are used for mesh generation using a balanced quadtree decomposition and a smoothing

operation to better discretise the boundaries of aggregates in the mesh. Section 3 reviews

the fundamental of the SBFEM used to model the aggregate and mortar phases of the con-

crete mesostructure. The zero-thickness interface elements required to model the fracture

within the concrete mesostructure are described in Section 4. Parametric studies are car-

ried out in Section 5 to investigate the e�ect of various parameters at the mesoscale e.g.

aggregate-to-weight ratio, aggregate size distribution on the strength of concrete. Qualita-

tive comparisons with results reported in the literature will be made. The feasibility of the

developed approach to model mesoscale fracture of concrete specimens obtained from X-ray

computed tomography (XCT) is also demonstrated. The major conclusions of the study are

summarised in Section 6.

2 Hybrid Quadtree Image-based Mesh Generation

Digital images of real or representative concrete mesostructures are used as inputs for the

mesoscale fracture analyses. The images may be obtained from XCT scans e.g. [31]. Al-

ternatively, representative concrete mesostructures can be generated from a take-and-place

algorithm e.g [51, 32]. In this study, digital images obtained from both the aforementioned

techniques will be used. Computational meshes are generated directly from the digital images

using quadtree decompositions. The use of quadtree meshes in mesh generation is comple-

mentary to the SBFEM. Each cell is modelled as an arbitrary sided polygon irrespective of

the presence of hanging nodes. The following sections describe the mesh generation process

from digital images.
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(a) digital image (b) initial decomposi-
tion

(c) quadtree mesh (d) balanced
quadtree mesh

Figure 1: Balanced quadtree mesh generation.

2.1 Quadtree mesh generation

Quadtree mesh generation involves the recursive subdivision of a space into four quadrants

or regions of equal dimensions. Each quadrant can be further partitioned into four smaller

quadrants referred to as �children� if a higher resolution is required in a desired region.

The information of each region is stored in a hierarchical data structure likened to a tree.

Between two adjacent levels, the quadrant at the top of the tree is the coarser �parent�,

which becomes more re�ned according to prescribed parameters further along the hierarchy.

MATLAB provides a built-in function 'qtdecomp' which performs quadtreee decomposition

of image �les based on the homogeneity of each divided region i.e. there can be only one

colour within a quadrant. If a divided region meets the homogeneity criterion it will not be

divided any further. Conversely, if the criterion is not met, the region is further divided into

four smaller square regions. A subsequent homogeneity test is applied to the new quadrants

that are generated from the quadtree decomposition. This process is repeated until all the

cells generated from the image satisfy the homogeneity criterion.

Fig. 1a shows a generic image which is to be discretised with a quadtree mesh. The

homogeneity criterion used here is the color of each cell. An initial application of the quadtree

decomposition will split the image in Fig. 1a into four cells as shown in Fig. 1b. At this

juncture, the two cells at the bottom satisfy the homogeneity criterion and will not be further

partitioned. The two cells on the top does not satisfy the homogeneity criterion. They are

further partitioned until the homogeneity criterion is satis�ed in all the cells as shown in

Fig. 1c.

Depending on the information of an input image, certain regions may require further

re�nement in order to satisfy the homogeneity criterion compared with other regions. This

can potentially create an unbalanced mesh resulting in large size di�erences between adjacent

cells where the quadtree transitions from coarse to �ne regions. Referring to Fig. 1c, examples

of such cells are the large ones at the bottom of the mesh. It is therefore common practice to

6



4 - node cell

5 - node cells 6 - node cells 7 - node cells

8 - node cell

Corner node

Hanging node

Figure 2: Quadtree cells belonging to a balanced quadtree decomposition.

impose restrictions on the maximum size di�erence between adjacent cells. This is referred

to as a balancing condition, which results in the �nal mesh being considered balanced or

restricted, once applied. A commonly imposed balancing condition is the 2:1 rule which

requires no node/region in the quadtree to be adjacent to one less than half its size [30]. For

the mesh in Fig. 1c, this is achieved by further partitioning the large cells at the bottom of

the mesh into four quadrants resulting in the balanced quadtree mesh in Fig.1d.

When a balanced quadtree mesh is adopted, the number of types of cells in the mesh is

limited to only the types shown in Fig. 2. This can be exploited for e�cient computations

in large scale computations or moving boundary problems [46, 26]. Only the information of

the types of cells in a balanced quadtree mesh are required and these can be pre-computed,

stored in the CPU memory and retrieved as needed during the actual computations.

2.2 Boundary smoothing along material interfaces

A purely quadtree decomposition will result in a mesh composed entirely of squares with only

horizontal and vertically aligned sides. For this reason, the interface between the aggregates

and the matrix in the concrete meso-structure cannot be realistically discretised using a

purely quadtree decomposition unless these regions are su�ciently re�ned. Unrealistically

high stresses can develop along the arti�cially induced jagged edges on the interfaces of

di�erent materials [22, 34]. Although this e�ect can be reduced with a high level of mesh

re�nement, discretisation error caused by the arti�cially induced jagged edges cannot be

entirely eliminated even with overly re�ned discretisations in these regions.
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(a) balanced quadtree decompo-
sition

(b) image contour detection (c) spline smoothing

Figure 3: Spline smoothing at material interfaces.

One alternative to resolve the arti�cial discretisation of the curved and irregular features

is to adopt a hybrid quadtree-polygon mesh [26]. Within this framework, the bulk of the

mesh is comprised of the 16 types of quadtree cells shown in Fig. 2. Along dissimilar material

interfaces and the irregular boundaries of the domain, arbitrary sided polygons are adopted

for a more realistic discretisation. This approach is adopted in this study and its application

to a generic image is shown in Fig. 3.

A boundary smoothing process is applied on the balanced quadtree decomposition (Fig. 3a)

of an image after it has been generated. MATLAB's built-in function 'contour ' is adopted to

identify the boundaries and the material interfaces in the concrete meso-structure (Fig. 3b).

The locations at which these contours intersect each quadrant in the quadtree decomposition

can be found from the change in the contour heights computed from the pixel colours of the

image. Once these intersections have been identi�ed, a smoothing procedure is applied to

adjust the segmented contours and align them to form the smoothed boundaries of the image.

MATLAB's built-in function 'smooth', which adopts a 5-point moving average technique is

used for this purpose. The smoothed contours determine the new boundaries of the material

interfaces in the mesh. Their intersections with the edges of the quadtree cells can be used

to cut these cells leading to two arbitrary sided polygons, which are naturally modelled by

the SBFEM.

Although the smoothing process increases the number of di�erent cell types in the �nal

mesh, representation of the boundaries of dissimilar materials is more realistic (see Fig. 3c).

The arti�cial jagged edges along dissimilar materials of a purely quadtree decomposition

(see Fig. 3a) are eliminated with spline smoothing. The discretisation along the boundary

is also coarser as compared with a purely quadtree discretisation employing a high mesh

re�nement at the material interfaces. This is signi�cant in reducing the the overall number
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of degrees-of-freedom of the mesh. Moreover, the polygonal cells are only present along the

boundaries between the aggregate and mortar phases.

3 Scaled Boundary Finite Element Formulation

The SBFEM can be formulated on polygons with an arbitrary number of sides so as long

as the polygon geometry satis�es a scaling requirement. This requires the de�nition of a

point, (x0, y0), called the scaling centre in the polygon from which the entire boundary is

visible. With reference to the de�nition of the scaling requirement, convex polygons, which

include any type of quadtree cells can be modelled by the SBFEM. A generic polygonal cell

modelled by the SBFEM is shown in Fig. 4a. The position of a point in the SBFEM is

described by a radial-circumferential like coordinate system (ξ, η) de�ned over a triangular

sector bounded by the scaling centre with coordinates and a line element as shown in Fig. 4b.

The radial coordinate ξ is de�ned from (x0, y0) to a point on the line element and has a

range 0 ≤ ξ ≤ 1 with ξ = 0 at the scaling centre and ξ = 1 at the line element. The local

coordinate η is de�ned similar to the FEM and has a range −1 ≤ η ≤ 1. Several triangular

sectors are combined to form a closed loop polygon. The Cartesian coordinates (x, y) of a

point bounded by the triangular sector shown in Fig. 4b is related to the SBFEM coordinates

by {
x(ξ, η)

y(ξ, η)

}
=

{
x0

y0

}
+ ξNu(η)xb (1)

where xb = [x1 y1 x2 y2 . . .]T is the nodal coordinate vector of the line elements on

the boundary with (xi, yi) as nodal coordinates and Nu(η) is the shape function matrix. In

this study, linear shape functions are used. Therefore Nu(η) has the form

Nu(η) =

[
N1(η) 0 N2(η) 0

0 N1(η) 0 N2(η)

]
(2)

and Ni(η) are standard one-dimensional �nite element linear shape functions.

Within a triangular sector, the displacement �eld u(ξ, η) is de�ned as

u(ξ, η) =Nu(η)uh(ξ) (3)

where uh(ξ) are analytical displacement functions obtained from the solution of the equi-

librium condition within a cell. The equilibrium condition in a polygon can be formulated
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Figure 4: Scaled boundary �nite element discretisation of a generic polygon.

from the principle of virtual work [8] or the method of weighted residuals [42]. This results

in the scaled boundary �nite element equation in displacement

E0ξ
2uh(ξ),ξξ +(E0 + ET

1 − E1)ξuh(ξ),ξ −E2uh(ξ) =0 (4)

where uh(ξ),ξ and uh(ξ),ξξ are the �rst and second derivatives of uh(ξ) with respect to ξ,

respectively. The coe�cient matrices Ei, i = 0, 1 and 2 are de�ned as

E0 =

∫ 1

−1

BT
1 (η)DB1(η)Jdη (5)

E1 =

∫ 1

−1

BT
2 (η)DB1(η)Jdη (6)

E2 =

∫ 1

−1

BT
2 (η)DB2(η)Jdη (7)

In Eq. (5) - Eq. (7), B1(η) and B2(η) are the SBFEM strain-displacement matrices, D is the

material constitutive matrix and J is the determinant of the Jacobian matrix J(η) required

for coordinate transformation [41]

J(η) =

[
xη yη

xη,η yη,η

]
(8)
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where

[xη yη]
T =Nu(η)xb (9)

and xη,η and yη,η are the �rst derivatives of xη and yη with respect to η. The coe�cient

matrices Ei are assembled over all the triangular sectors in a cell in a manner similar to the

assembly process of the FEM.

The solution of the second order di�erential equation in Eq. (4) for a cell is obtained by

�rst transforming it into a �rst order di�erential equation with twice the number of unknowns

as [41]

ξ

{
uh(ξ)

qh(ξ)

}
,ξ

= − Z

{
uh(ξ)

qh(ξ)

}
(10)

where qh(ξ) is a vector of analytical functions related to the internal forces

qh(ξ) =E0uh(ξ),ξ +ET
1 uh(ξ) (11)

and Z is a Hamiltonian matrix

Z =

[
E−1

0 ET
1 −E−1

0

−E2 + E1E
−1
0 ET

1 −E1E
−1
0

]
(12)

Eq. (10) is solved by decomposing Z into base vectors. A Schur decomposition of Z is

performed. This results in

ZV =VS (13)

The Schur matrix S has the following form

S =

[
Sn ∗

Sp

]
(14)

where Sn and Sp are upper triangular matrices with negative and positive eigenvalues of Z

along their diagonals. The transformation matrix V can be partitioned as

V =

[
Vu Vu

Vq Vq

]
(15)
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The matrices Vu and Vu are related to the displacement modes of a cell whereas the matrices

Vq and Vq are related to the modal forces. For bounded domains such as the quadtree

and polygonal cells considered in this study, only the Schur matrix containing negative

eigenvalues Sn and its corresponding modal displacements Vu and modal forces Vq lead

to �nite displacements at the scaling centre. The solution for the analytical displacement

functions uh(ξ) and analytical internal force functions can then be expressed as

uh(ξ) =Vuξ
−Snc (16)

qh(ξ) =Vqξ
−Snc (17)

where c are the integration constants that depend on the boundary conditions and can be

computed from the nodal displacements in each polygon as

c =V−1
u ub (18)

and ub is the polygon nodal displacement vector. Substituting Eq. (16) into Eq. (3), the

complete displacement �eld in a triangular sector bounded by the scaling centre and a line

element on the boundary of a polygon can be expressed as

u(ξ, η) =Nu(η)Vuξ
−Snc (19)

The sti�ness matrix of a cell Kcell is de�ned in Eq. (15) as

Kcell =VqV
−1
u (20)

The corresponding strain �eld ε(ξ, η) is formulated from its de�nition and the use of the

SBFEM coordinate transformation as [41]

ε(ξ, η) =B1(η)uh(ξ),ξ +ξ−1B2(η)uh(ξ) (21)

Substituting Eq. (16) into Eq. (21), the strain can be expressed as

ε(ξ, η) =Ψε(η)ξ−Sn−Ic (22)

where I is an identity matrix and the strain mode Ψε(η) is de�ned as

Ψε(η) = − B1(η)VuSn + B2(η)Vu (23)
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If the cells behave in a linear elastic manner the stress �eld σ(ξ, η) is expressed using the

Hooke's law as

σ(ξ, η) =Dε(ξ, η) (24)

The �exibility to formulate the SBFEM over arbitrary sided polygons makes it particularly

suitable for implementation with quadtree meshes. Within this framework, each cell in the

mesh is treated as an arbitrary sided polygon modelled by the SBFEM. A similar framework

was previously adopted by Tabarraei and Sukumar [46] for h-adaptive computations with the

FEM, where instead of the SBFEM, polygonal interpolants based on the natural neighbour

shape functions are used. In addition to the advantages that can be gained in automatic

mesh generation (as was previously outlined in Section 2), quadtree meshes also facilitate

more e�cient computations particularly when a balanced quadtree mesh is employed. The

geometric restrictions of balanced quadtree meshes limit the number of quadtree cells to

only the sixteen types shown in Fig. 2. These cells are referred to as master cells [26].

For homogeneous, isotropic linear elastic materials, the sti�ness and mass matrices of these

cells can be pre-calculated before the analysis and stored within the CPU memory. During

the analysis, they can be quickly retrieved (and scaled in a dynamic analysis) for quick

computations. Additional computations of the sti�ness matrix are required only for the

arbitrary sided polygonal cells that model the boundaries of the aggregates and mortar

phases.

4 Meso-scale Cohesive Fracture Representation

To model the fracture at the mesoscale, the hybrid quadtree-polygon mesh is further aug-

mented to allow insertion of interface elements along the boundaries of each cell. This process

involves �rst, fragmentation of an initial mesh such as that shown in Fig. 5a by duplicating

the nodes and edges that are shared by two (or more) cells in the mesh. The number of

nodes to be duplicated depends on the connectivity of the node to the cells. For a node that

is shared by n number of cells, the number of duplicate nodes is n− 1. At the same time, a

common edge shared by adjacent cells is also duplicated. The cell-nodal connectivity is then

regenerated taking into account the new nodes and edges generated by the fragmentation

process. This results in the mesh shown in Fig. 5b where the duplicated nodes are shown in

italics. Each cell is now self-contained and does not share a common node with its adjacent

cells.

The cells in the mesh are then reconnected again using zero-thickness 4-node cohesive
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interface elements (Fig. 6) developed by Gerstle and Xie [12] along all the internal cell bound-

aries that previously share a common edge with an adjacent cell/polygon. This results in

the mesh shown in Fig. 5c. The mesh fragmentation process adopted in this study resembles

those adopted in the FEM e.g. [52, 54, 48, 31]. Instead of standard �nite element shapes,

quadtree and polygonal meshes are adopted in this study.

The cohesive interface elements are used to model all potential crack paths in the con-

crete mesostructure along three possible interfaces: aggregate-mortar; mortar-motar; and

aggregate-aggregate in the mesh. Fracture is allowed to propagate only along the boundaries

of the cells in the mesh. The interface elements have zero-thickness and are characterised

by traction-separation laws in both normal and tangential directions. Di�erent types of

traction-separation laws can be de�ned e.g. linear softening (Fig. 7) or bilinear softening as

widely used in Yang et al. [54], Huang and Li [15], Wang et al. [48], Ren et al. [31]. The

constitutive relation between the normal and tangential stress with the relative normal and
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tangential displacement between two opposing edges of an interface element is{
τ

σ

}
=C

{
s

w

}
(25)

where σ and τ are the normal and tangential stress along the element and w and s are the

relative opening and sliding displacements, respectively. The matrix C is de�ned as

C =

[
ks ksn

ksn kn

]
(26)

where kn and ks are the secant sti�nesses of the traction-separation curves in the normal

and tangential directions, respectively. The variable ksnin Eq. (26) represents the additional

sti�ness due to the interaction between the shear and the normal fracture mechanisms. It

is not considered in this study as the magnitude of the normal shear interaction is not

reported in the literature. Therefore, the proposed method will be subjected to situations

in which there might be shear reaction to the tangential relative displacement (slip) even

when the crack is completely opened. It is also to note that the approach adopted in this

study should have no restriction on the type of constitutive model that can be implemented

with the SBFEM. More complex constitutive models can be considered if desired. For

example, implementation with a constitutive formulation that conforms to work-softening

elasto-plasticity e.g. [23] may also be attempted. The magnitudes of tensile strength ft,

critical opening displacement wc, shear strength fs and critical sliding displacement sc that

de�ne the traction-separation laws depend on whether the interface elements are connected

to the mortar-mortar phase, the aggregate-mortar phase or the aggregate-aggregate phase.

The sti�ness matrix of each interface element is computed as

Kitz =

∫
NT
z (η)CNz(η)dη (27)

where the shape function matrix Nz(η) is de�ned as

Nz(η) =

[
−N1(η) −N2(η) N2(η) N1(η)

−N1(η) −N2(η) N2(η) N1(η)

]
(28)

The shape functions N1(η) and N2(η) are standard one-dimensional linear �nite element

interpolants. Standard Gaussian quadrature can be employed to integrate Kitz. The interface

elements are compatible with the SBFEM formulation and can be coupled directly without

any special techniques. The compatibility arises due to the use of linear shape functions
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Figure 7: Generic traction separation curves for fracture modelling.

along the quadtree and polygonal cells and along the edges of the interface elements in the

mesh. The sti�ness matrix in each interface element can be assembled with Kcell similar to

the assembly process in the FEM.

5 Mesoscale Fracture Modelling

5.1 Parametric Studies

Parametric studies are carried out to determine the in�uence of mesostructure heterogene-

ity e.g. aggregate to volume ratio, aggregate size and specimen porosity on the fracture

characteristics of concrete. For this purpose, a take-and-place algorithm is implemented to

generate specimens representative of concrete mesostructure.

The mesostructure of a specimen is generated using a Java programming environment

called Processing [29]. A take-and-place algorithm is adapted from the work of Wriggers and

Moftah [51]. Only the intervals of the aggregate diameters in a sample are required as input,

which can be determined based on the sieve size and the specimen's aggregate volume ratio.

The size distribution of the aggregates in a concrete mesostructure is �rst determined using

Fuller's grading curve

P (d) =100

(
d

dmax

)n
(29)

where P (d) is the cumulative percentage of an aggregate to pass a sieve with diameter d, dmax

is the maximum aggregate size and n is an exponent de�ned in the range 0.45 ≤ n ≤ 0.70.
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Figure 8: Flow diagram of aggregate placing algorithm.

The area of the aggregates within an interval [di, di+1] is then computed as [51]

Ap[di, di+1] =
P (di) − P (di+1)

P (dmax) − P (dmin)
µp (30)

where µp is the volume fraction of the mesostructure, A is the total area of the specimen,

Ap[di, di+1] is the volume fraction of the aggregates de�ned within [di, di+1] and d is the size

of the sieve.

The process of aggregate generation in a generic mesostructure is outlined in Fig. 8.

The aggregates are assumed to be circular with diameter d. The algorithm considers only

the placement of coarse aggregates i.e. aggregates with diameters d ≥ 4.75 mm. Fine

aggregates, which comprise of sand and crushed stone are assumed to belong to the mortar

phase of concrete. The algorithm requires as inputs, the size of the concrete mesostructure,

the aggregate volume ratio µp and the range of the aggregate diameters expected in the

sample [d1, d2, d3 . . . , dn].

Starting from a random value of diameter sampled within the range [di, di+1], the algo-

rithm continuously places the centre of the aggregate at random locations within the domain

of the mesostructure Ω. The position of the aggregate is checked to ensure that it neither

overlaps other previously generated aggregates nor placed outside the bounding box de�ning
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Figure 9: Concrete specimen subjected to uniaxial tension.

the boundary of the mesostructure. The aggregates are assumed to be coated around with a

mortar �le having a certain minimum thickness γd similar to the approach of Wriggers and

Moftah [51]. In this study, γ = 0.02 is adopted.

Once a suitable size and location of an aggregate is found, the algorithm stores the

aggregate in an object array list and breaks out of the loop. This process is then repeated

for each of the interval [di, di+1] until the domain of the mesostructure reaches the target

µp. The draw function in Processing is then executed to generate the image before saving in

a desired format.

Concrete specimens with dimensions 100 mm × 100 mm and subjected to uniaxial tension

as shown in Fig. 9 are considered. Plane stress conditions are assumed. The specimens have

an out of plane thickness of 150 mm. The right edge of a specimen is subjected to a uniform

horizontal displacement u and the left edge is constrained from motion in the horizontal

direction. In this study, the mesostructure of the concrete is assumed to comprise only of

two phases viz., aggregate and mortar. A generic image of a specimen with aggregate volume

ratio µp = 60% with 2% porosity is shown in Fig. 9. The aggregate phase is denoted in black

whereas the mortar phase is denoted in grey.

The hybrid quadtree-polygonal mesh of a generic specimen is shown in Fig. 10a. The

color of each phase is used as the homogeneity criterion during mesh generation. In order to

preserve the full resolution of the image, the size of the smallest cell is set to 1 pixel when

the quadtree decomposition was applied. The scaling between the image and the physical

size of the specimen is 1 : 1, i.e. (1 pixel = 1 mm). The size of the image is 128× 128 pixels.

Fig. 10b shows the quadtree mesh after fragmentation and insertion of interface elements.

18



Table 1: Material properties adopted for di�erent phases in the concrete mesostructure.

Component E (GPa) ν ft (MPa) Gf (N/mm)

Aggregate 37 0.2 - -
Mortar 20 0.2 - -

Aggregate-aggregate interface 37 - 15 0.16
Mortar-mortar interface 20 - 3.8 0.09

Aggregate-mortar interface 18 - 1.9 0.045

The interface elements are identi�ed by color i.e. red along the aggregate-mortar interface;

blue along the aggregate-aggregate interface; and yellow along the mortar-mortar interface.

The inset in Fig. 9 shows a close up of interface elements in a the quadtree mesh.

The traction-separation laws adopted for the interface elements depend on the position of

the interface elements viz. the aggregate-aggregate interface, the mortar-mortar interface or

the aggregate-mortar interface. The material parameters used for the aggregate and mortar

phases and to de�ne the traction-separation laws are a source of ambiguity. The information

that is reported in the literature is diverse. For example, di�erent assumptions have been

adopted for the behaviour of the aggregate phase. Trawi«ski et al. [47] and Rodrigues et al.

[32] assumed that the aggregates do not fracture whereas Zhang et al. [57] and Benkemoun

et al. [2] allowed fracture through aggregates. Di�erent values have also been reported for the

tensile strength ft for the mortar phase and the aggregate-mortar interface. In the former,

the range of ft reported is between 2.6 MPa and 6 MPa; whereas for the aggregate-mortar

phase, ft between 0.5 MPa and 3 MPa has been reported [36, 48, 2, 32, 47, 37]. The material

properties adopted for the various phases of the concrete mesostructure in this study is shown

in Table 1. The magnitudes of these parameters are selected to be within the range of the

values previously reported in the literature. It is noted that the aggregate-mortar interface

is the weakest component in the concrete mesostructure and is assumed to have half the

tensile strength and fracture energy of the interface elements at the matrix-matrix interface

e.g. [32, 17]. It is also assumed that the cracks cannot propagate through the aggregates.

This is achieved by assigning a reasonably high value of tensile strength and fracture energy

to the aggregate-aggregate interface.

The traction-separation law in the normal direction is assumed to follow from the expo-

nential relation reported by Karihaloo [18]

σ =fte
−4.6052 w

wc (31)
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(a) hybrid quadtree mesh (b) hybrid quadtree mesh show-
ing interface elements

Figure 10: Generic quadtree mesh generated from a specimen with µp = 60%.

where the critical crack opening wc is estimated as

wc =
4.6517Gf

ft
(32)

The shear strength fs and shear fracture energy Gfs required for the traction-separation law

in the tangential direction are assumed to be 0.3ft and 0.3Gf , , respectively. The softening

branch follows an exponential law as that in the normal direction.

The size of the quadtree mesh varies depending on the aggregate size distribution and the

aggregate volume ratio. Generally, the number of cells in a mesh range between 2500 and 3800

and the number of nodes between 10000 and 16000. During the fracture simulations, however,

the initial SBFEM sti�ness matrices are pre-calculated and stored for all the 32 possible

master quadtree cells (16 possible master cells in each phase, aggregate and mortar). These

constitute the bulk of cells in the mesh. Additional computations of sti�ness matrices are

required only for the irregular cells located on the boundary or between dissimilar materials.

The nonlinear analysis is carried out by adopting a standard displacement control scheme.

During pre-peak response, discrete cohesive constitutive model relating stresses and relative

displacement requires the use of very high elastic sti�ness to preclude relative displacements

in the interfaces before failure. This can be a source of numerical instabilities depending on

the assumed value for the elastic sti�ness. The elastic sti�ness is identi�ed by adopting a

critical value of 1×10−4 mm so that the initial sti�nesses of the aggregate-aggregate, mortar-

mortar and aggregate-mortar are 150000 MPa/mm, 38000 MPa/mm and 19000 MPa/mm,

respectively. To avoid numerical instabilities in the solution of the nonlinear system of

equations due to the formation of multiple cracks in heterogeneous materials (usually during

the late post peak regions), the change of the norm of displacement increments between each
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Figure 11: Stress-displacement response of concrete specimens with di�erent aggregate vol-
ume ratio.

iteration to predict if the equilibrium iterations will converge. If the change in the norm of

displacement between ten successive iterations is too small, the solution is terminated and

the results from the �nal load converged load step is recovered.

5.1.1 In�uence of aggregate volume Ratio

The in�uence of the aggregate volume ratio on the fracture parameters of in the concrete

mesostructure under uniaxial tension is studied. Square concrete specimens with aggregate

volume ratio µp of 40%, 50% and 60% are considered. The aggregate size distribution is

chosen based on the nominal sieve sizes speci�ed in Australian Standard AS 2758.0 Cl 3.5 [1]

and is [38.3 mm, 26.5 mm, 19 mm, 13.2 mm, 9.5 mm, 6.7 mm]. For each µp considered, �ve

samples are generated.

The individual stress-displacement responses of the concrete specimens are shown in

Fig. 11. The pre-peak responses of all the specimens are similar and are consistent with the

simulations reported by Rodrigues et al. [32]. The stress here is de�ned as the ratio of the

sum of the reaction forces at the left edge of the specimen to the specimen's cross sectional

area.

The predicted peak stress was between 1.74 MPa and 2.0 MPa depending on the aggregate

volume ratio. The predicted values are in proportion to typical concrete tensile strengths re-

ported in the literature e.g. [28] depending on the water-to-cement ratio of the mix. There is

a clear dependence on the predicted load carrying capacity with the tensile strength adopted

for the interface transition zone. The load carrying capacity was close to the tensile strength
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(a) µp = 40% (b) µp = 50% (c) µp = 60%

Figure 12: Development of micro fractures (in red) at peak load.

at the aggregate-mortar interface, which was 1.9 MPa. Variations between specimens with

the same µp is observed. The predicted peak stress was 1.95 MPa to 2.03 MPa in speci-

mens with µp = 40%, 1.85 MPa to 1.91 MPa in specimens with µp = 50% and 1.74 MPa to

1.79 MPa in specimens with µp = 60%. However, the observation that concrete specimens

with lower µp lead to a higher load carrying capacity is consistent between specimens with

di�erent µp. This result agrees with the numerical results in previous studies e.g. [48, 31, 32]

which assumes that the aggregate-mortar interface is weakest in the concrete mesostructure.

Specimens with higher µp are observed to result in a higher number of interface elements

along the aggregate-mortar interface. As the aggregate-mortar interface is weakest in the

concrete mesostructure, a higher aggregate volume fracture promotes the coupling along

these interfaces, which is conducive to the formation of cracks and therefore, contributes

to the reduced load carrying capacity of these specimens [20]. This e�ect can be explained

by examining the relative displacements of the interface elements at peak load of generic

specimens with di�erent µp as shown in the plots in Fig. 12. Although the magnitudes of

maximum relative displacements is comparable between specimens with di�erent µp, spec-

imens with a larger aggregate volume ratio is observed to have more regions in which the

crack bridging mechanisms are active (indicated by the presence of more identi�able magni-

tudes of relative displacements around the aggregates as shown in Fig. 12c). This led to the

lower load carrying capacity of these specimens.

It is worth noticing here that the mode mixity α de�ned as

α =
fs
ft

=
Gfs

Gf

(33)

has some degree of in�uence over the predicted peak stress of the specimens. This can be
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Figure 13: E�ect of mode mixity α on the predicted peak stress of a generic concrete speci-
men.

demonstrated by investigating a µp = 60%. concrete specimen with the same aggregate size

distribution considered in the aforementioned parametric study. The specimen is subjected

to uniaxial tension and the stress-displacement responses are recorded for three di�erent

mode mixity α = 0.30, α = 0.45 and α = 0.60. The plots of specimen stress versus applied

displacement in Fig. 13 show that the specimen's peak stress increases with increasing α. This

observation can be attributed to the orientation of the interface elements in the mesh. The

inclined interface elements undergo mixed-mode deformation. Depending on the inclination

angle of each element, the mode mixity can have an e�ect on the overall deformation of

the specimen. An assumption of a high mode mixity increases the cohesive forces in these

interface elements resulting in a specimen that can sustain a higher load.

It is also observed that there is more variance in the post-peak response for specimens

with a smaller µp as compared with specimens with larger µp. This can be attributed to

larger the degree of heterogeneity of the mesostructure in the specimens with lower aggregate

volume ratio. In specimens with a higher µp, the aggregates �ll up most of the space inside

the mesostructure, which results in a more homogeneous structure compared with specimens

with a lower µp. The increased randomness of aggregate placement in specimens with low

aggregate volume ratio ultimately induces a higher variance in the predicted load de�ection

responses.

Fig. 14 shows the �nal predicted crack paths for generic specimens having di�erent

aggregate-to-matrix ratio µp. For all the 15 specimens considered in this parametric study,

the failure of the specimens is characterised by the development of a major crack that cuts
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(a) µp = 40% (b) µp = 50% (c) µp = 60%

Figure 14: Final predicted crack paths of generic specimens for di�erent µp scaled 20 times.

through the specimen. The position of the macrocrack is random and depends on the arrange-

ment of the aggregates in the concrete mesostructure. In all the specimens, the development

of the fracture surfaces is evident only when the load-displacement response enters the region

near peak load. During peak load, the initiation of small cracks can be observed along the

interfaces of the aggregates. These are particularly evident along the larger sized aggregates

as can be observed in the plot of the relative displacements of the interface elements in

Fig. 12.

Compared with the smaller sized aggregates, the interface transition zones surrounding

the large-sized aggregates are longer. Collectively, these regions are therefore, weaker com-

pared with those surrounding the smaller aggregates. Cracks are therefore, more likely to

initiate near the larger aggregates. As the softening phase progresses further, these cracks

grow in length and coalesce with the other cracks in their vicinity. This subsequently led

to the development of a major crack. At this stage, the cracks along the aggregates that

are positioned far away from the major crack begin to close as the interface transition zones

in these regions experience unloading. The specimens ultimately fail when the major crack

propagates through the entire length of the specimen.

Irrespective of a specimen's aggregate volume ratio, the in�uence of the heterogeneity of

the aggregate arrangement on the �nal crack path, is evident. Fig. 15 shows the predicted

crack paths for the remaining 4 specimens with µp = 50%. Although the paths of the failure

macrocrack crack di�er from specimen to specimen, they were observed to concentrate along

the interface elements surrounding the large sized aggregates, highlighting the in�uence of

the heterogeneity of the mesostructure in the predicted fracture paths.
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(a) Specimen 2 (b) Specimen 3

(c) Specimen 4 (d) Specimen 5

Figure 15: Final predicted crack pattern for four di�erent specimens with µp = 50% scaled
20 times.
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Figure 16: Stress-displacement response of concrete specimens with di�erent aggregate dis-
tribution.

5.1.2 In�uence of Aggregate Size Distribution

The in�uence of the aggregate size distribution on the mesoscale fracture characteristics

of concrete under direct tension (Fig. 9) is studied next. Square concrete specimens with

aggregate volume fraction µp = 50% are generated considering three di�erent aggregate size

distributions as follows:

dag1 =[38.3 mm, 26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm]

dag2 =[26.5 mm 19.0 mm 13.2 mm 9.5 mm 6.7 mm]

dag3 =[19.0 mm 13.2 mm 9.5 mm 6.7 mm]

Each aggregate distribution is distinguished by the maximum aggregate diameter dmax in

the concrete mix. For each aggregate size distribution considered, 5 samples are generated.

Fig. 16 shows the predicted structural response obtained from the samples having vary-

ing aggregate distribution. It is observed that the load carrying capacity decreases with

increasing aggregate size. The predicted peak stress was 2.08−2.13 MPa for specimens with

dmax = 19.0 mm, 2.03 − 2.07 MPa for specimens with dmax = 26.5 mm and 1.95 − 2.02 MPa

for specimens with dmax = 38.3 mm. Also observed in Fig. 16 is the less pronounced softening

branch of the specimens with smaller dmax. This is clearly observed in the load-displacement

responses of specimens with dmax = 19.0 mm and dmax = 26.5 mm by a sharp decline in the

load carrying capacity immediately after the peak load has been reached. This trend is less

obvious in specimens with dmax = 38.3 mm where the softening phase is more pronounced.

26



Numerical simulations reported by Rodrigues et al. [32], Du et al. [9] and Huang and Li [15];

and experimental observations reported by Hordijk [14] support the current �ndings.

Rodrigues et al. [32] and López et al. [23] attributed the less pronounced softening branch

to the increased crack bridging mechanisms from the crack interface interactions around the

larger sized aggregates. This increases the residual strength resulting in more energy dissi-

pated from the fracture evolution during the softening phase and thereby, an increased area

under the curve in this region. The decrease in the observed peak stress in specimens with

larger aggregate sizes is attributed to the concentrated localised failure around the few large

sized aggregates. Compared with samples with smaller aggregates, the relative displacement

that develops around the large aggregates is larger despite reaching the peak load at a lower

applied displacement u (see Fig. 16); thereby inferring a lower cohesive force in these regions.

This can be identi�ed by comparing maximum crack opening displacements of the interface

elements in the mesh at peak load in the quiver plots shown in Fig. 17 or by comparing

the magnitude of displacement discontinuity between the aggregate and matrix phases in

the displacement contour plots shown in Fig. 17. In specimens with dmax = 19.0 mm, the

average maximum crack opening displacement was 0.009 mm, whereas it was 0.011 mm and

0.018 mm in the specimens with dmax = 26.5 mm and dmax = 38.3 mm, respectively.

Fig. 18 shows the �nal crack patterns obtained from typical specimens with dmax =

38.2 mm, dmax = 26.5 mm and dmax = 19.0 mm. The failure macrocrack is observed to de-

velop along the aggregate-mortar interface. In the specimens with larger aggregate diameter,

the failure crack tends to develop along the larger sized aggregates. This is supported by the

observation of the increased crack bridging mechanisms at the interface transition zones along

the boundaries these aggregates (Fig. 17). In specimens with a smaller aggregate diameter,

the distribution of the aggregates resulted in a more homogeneous structure. Although the

failure macrocrack still propagate through the weaker interface transition zones between the

mortar and aggregate phase, the congregation of the crack along the larger sized aggregates

is not obvious as compared with the specimens with larger aggregate diameters. In these

specimens, the failure crack tends to develop in a region of closely packed aggregates where

the cumulative e�ect of the crack bridging mechanisms lead to the coalescence of the small

cracks in the vicinity of the small sized aggregates e.g. Fig. 18c.

5.1.3 In�uence of Specimen Porosity

The e�ect of porosity on the fracture characteristics of concrete mesostructure is investigated

next. Concrete specimens with aggregate volume ratio µp = 50% are generated considering

di�erent levels of porosity. Porosity can be introduced during meso-scale image generation

in a similar manner in which the aggregates are generated. The air gaps are assumed to
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(a) dmax = 19.0mm

(b) dmax = 26.5mm

(c) dmax = 38.3mm

Figure 17: Displacement contour of typical specimens with di�erent dmax at peak load.
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(a) dmax = 38.3mm (b) dmax = 26.5mm (c) dmax = 19.0mm

Figure 18: Final predicted crack pattern for typical specimens with di�erent magnitudes of
dmax magni�ed 20 times.

be circular in shape with diameter randomly sampled between 3.0 mm ≤ dpore ≤ 5.0 mm.

The operation to include the air gaps in the specimen requires only �lling up an admissible

location with a di�erent color (in this case, white) and is initiated after aggregate generation.

Three di�erent porosity levels are considered viz., 1%, 2% and 3%. For each porosity level

considered, 5 samples are generated. The load carrying capacity of the porous specimens are

compared with specimens with zero porosity.
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Figure 19: Stress-displacement response of concrete specimens with di�erent porosity levels.

Fig. 19 shows the in�uence of porosity on the load carrying capacity of the specimens. A

decrease in the tensile load carrying capacity is observed with increasing porosity. The range

of predicted peak stress is 1.86 − 1.92 MPa for specimens with zero porosity, 1.81 − 1.88
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MPa for specimens with 1% porosity, 1.69 − 1.74 MPa for specimens with 2% porosity and

1.55 − 1.63 MPa for specimens with 3% porosity. The loss in load carrying capacity is quite

signi�cant considering an average loss of 10% when there is an increase of only 2% in the

porosity.

The decrease in tensile load carrying capacity with increasing porosity can be attributed

to the decreased surface area available to sustain the applied load. This creates an environ-

ment which is conducive to the evolution of fractures. The regions in which voids are present

o�er no resistance to the propagation of cracks and promote the coalescence of the small

cracks that initiate at the interface transition zone of the surrounding aggregates. Fig. 20

shows the �nal crack patterns of typical concrete specimens with di�erent porosity levels. It

can be identi�ed from these �gures that the failure macrocrack of the specimen propagates

through the voids wherever possible, following the path of least resistance to fracture the

specimen. A distinction can be observed when comparing the fracture paths with a speci-

men with zero porosity (e.g. Fig. 14b). For the non-porous specimens, the fracture path is

generally identi�ed to follow the boundary of the aggregates. In the porous specimens, the

presence of the voids facilitates fracture through the matrix in the vicinity of the voids.

(a) 1% porosity (b) 2% porosity (c) 3% porosity

Figure 20: Final predicted crack pattern for typical di�erent specimens with porosity mag-
ni�ed 20 times.

5.2 Mesoscale Fracture Modelling of Concrete Specimens from XCT

Scans

To demonstrate the application of the developed approach on the modelling of realistic

concrete mesostructure, the XCT images of concrete specimens obtained from the study

of Ren et al. [31] are considered. The hybrid quadtree polygon meshes of each specimen's
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(a) specimen 1 (b) specimen 2

(c) specimen 3 (d) specimen 4

Figure 21: Concrete specimens obtained from XCT scanning subjected to uniaxial tension.
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Figure 22: Stress-displacement response of concrete specimens obtained from XCT scans.

meso-structure are shown in Fig. 21. The meshes are generated from images having a size

of 256 × 256 pixels. The smallest and largest pixel size adopted for quadtree discretisation

are 2 and 32, respectively. The smoothing operation described in Section 2.2 is then applied

to remove the jagged edges resulting from a purely quadtree decomposition along the edges

between the aggregates and the mortar. The aggregate volume ratio of Specimens 1, 2, 3

and 4 are 61%, 57%, 56% and 57%, respectively.

All the specimens are constrained and subjected to direct tension similar to the conditions

shown in Fig. 9. The material properties shown in Table 1 are adopted for the di�erent phases

in the concrete mesostructure. The softening laws in both normal and tangential directions

follow from that described in Section 5.1.

Fig. 22 shows the stress-displacement responses of the four concrete specimens. The

predicted peak stress of the specimens are between 1.46 − 1.52 MPa. Fig. 23 shows the

predicted failure crack in each of the four specimens considered. It is evident from Fig. 22

and Fig. 23 that the heterogeneity of the concrete meso-structure has a huge e�ect on the

predicted fracture patterns. The failure patterns of the four specimens are reminiscence of

the failure patterns reported by Wang et al. [48] and Ren et al. [31]. The specimens either

fail due to the development of a single macrocrack viz.. specimens 1 and 3 or fail due to the

development of two macrocracks viz. specimens 2 and 4. The more rapid drop in the strength

of specimens that fail due to the development of a single macrocrack is evident in the stress-

displacement responses of specimens 1 and 3 in Fig. 22, when compared with specimens that

fail due to the development of two macrocracks viz. specimens 2 and 4. This observation is

consistent with the results of Wang et al. [48] and Ren et al. [31], and can be attributed to the
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Figure 23: Final predicted crack patterns for XCT imaged specimens magni�ed 20 times.
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lack of crack bridging mechanisms in specimens where two macrocrack develops, leading to

a high residual load carrying capacity. The residual load carrying capacity can be observed

to also depend on the length of the developed macrocrack. The longer the macrocrack, the

higher the residual load carrying capacity. This is especially obvious in specimen 4, where

the failure macrocrack is observed to be longer than the other specimens. Consequently,

this would mean that the development of the macrocrack requires the expenditure of more

energy and hence a higher residual load carrying capacity. The results of this analysis clearly

indicates the strong in�uence of the heterogeneity of the mesostructure on the peak stress

and fracture pattern of concrete.

6 Conclusions

Meso-scale fracture in concrete was modelled using an automatic image-based, hybrid quadtree-

polygon SBFEM framework. The �exibility of the SBFEM to directly model arbitrary sided

polygons enables the geometric features in the concrete meso-structure to be adequately

represented without the need for very �ne discretisations. This was achieved by adopting a

combination of quadtree cells and arbitrary sided polygons.

Automatic mesh generation from digital images was achieved by adopting a balanced

quadtree decomposition. A smoothing procedure which splits the quadtree cells into two

arbitrary sided polygons is applied to improve the boundary representation of the aggregates

and air voids in the mesostructure. This operation eliminates the jagged edges around the

aggregates and the boundaries of pores resulting from a purely quadtree decomposition.

It also removes the requirement for an unnecessary �ne mesh in these regions, that would

otherwise be required for a more accurate discretisation of irregular boundaries if a pure

quadtree mesh was adopted. The SBFEM models each quadtree cell directly as an arbitrary

sided polygon irrespective of the presence of hanging nodes between adjacent quadtree cells

of di�erent sizes. The polygonal cells along the aggregate or air void boundaries, which are

products of the smoothing operation are directly modelled by the SBFEM.

The fracture process zone within the meso-structure is modelled using pre-inserted zero-

thickness interface elements in the mesh following a mesh fragmentation process. Appropriate

constitutive laws are assigned to the interface elements depending on their positions in the

mesh e.g. aggregate-to-aggregate, matrix-to-aggregate.

Parametric studies were carried out on graded distributions of representative graded

concrete meso-structures subjected to direct uniaxial tension. These showed that:

1. The developed technique was capable of reproducing the typical fracture characteristics

of concrete observed in numerical and experimental studies reported in the literature
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[14, 23, 32] e.g. the reduction of load carrying capacity with increased aggregate

diameter, aggregate volume ratio and porosity; the more pronounced softening branch

in specimens with larger aggregate diameter.

2. The ultimate tensile load carrying capacity depends on the magnitude of the tensile

strength of the interface elements used to model the interface transition zone between

the aggregate and mortar phases.

3. The heterogeneity of the concrete mesostructure has a profound in�uence on the pre-

dicted load carrying capacity and the �nal predicted crack paths. The failure macro-

crack has a tendency to develop and coalesce between aggregates with larger diameters

or a congregate of closely spaced aggregates.

4. The reduction the load carrying capacity under direct uniaxial tension is attributed

to the increased crack bridging mechanisms in specimens with larger aggregate diam-

eters and also in specimens with larger aggregate volume ratio as the loading response

progresses into the softening phase (Fig. 12 and Fig. 17).

Mesoscale fracture analyses of real concrete specimens obtained from XCT scans were carried

out. The results showed mesoscale fracture characteristics of concrete under direct tension

that are consistent with the results reported in the literature.

The proposed method adopt �xed meshes, which limits the number of available paths for

fracture and possibly result in some biasing of the propagation directions. Even if triangular

elements are used as in the context of the FEM, mesh biasing cannot be completely eliminated

e.g. [5]. The bias in the propagation directions may be overcome by adopting an adaptive

meshing techniques. This may be possible by combining the present approach with the

general coordinate formulation with side face tractions to resolve the crack tip �elds and

determine the propagation directions from the stress �eld. The quadtree cells can be further

remeshed into several polygons during crack propagation to avoid bias in the propagation

direction.

It is also to be noted that although capable of producing pertinent qualitative results

in the uniaxial tension test, the developed method is bound by the limitations of a two-

dimensional analysis. Representation of concrete mesostructure by planar segments is not

representative of the actual three-dimensional morphologies of the concrete aggregates. As

a result, a two-dimensional analysis is in capable of modelling the fracture pattern observed

experimentally in cubic concrete specimens.
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