307 research outputs found

    An explanation for the curious mass loss history of massive stars: from OB stars, through Luminous Blue Variables to Wolf-Rayet stars

    Get PDF
    The stellar winds of massive stars show large changes in mass-loss rates and terminal velocities during their evolution from O-star through the Luminous Blue Variable phase to the Wolf-Rayet phase. The luminosity remains approximately unchanged during these phases. These large changes in wind properties are explained in the context of the radiation driven wind theory, of which we consider four different models. They are due to the evolutionary changes in radius, gravity and surface composition and to the change from optically thin (in continuum) line driven winds to optically thick radiation driven winds.Comment: Accepted for publication in Astronomy and Astrophysics (Letter to the Editor

    A large Wolf-Rayet population in NGC300 uncovered by VLT-FORS2

    Get PDF
    We have detected 58 Wolf-Rayet candidates in the central region of the nearby spiral galaxy NGC 300, based on deep VLT-FORS2 narrow-band imaging. Our survey is close to complete except for heavily reddened WR stars. Of the objects in our list, 16 stars were already spectroscopically confirmed as WR stars by Schild & Testor and Breysacher et al., to which 4 stars are added using low resolution FORS2 datasets. The WR population of NGC300 now totals 60,a threefold increase over previous surveys, with WC/WN>1/3, in reasonable agreement with Local Group galaxies for a moderately sub-solar metallicity. We also discuss the WR surface density in the central region of NGC 300. Finally, analyses are presented for two apparently single WC stars - #29 (alias WR3, WC5) and #48 (alias WR13, WC4) located close to the nucleus, and at a deprojected radius of 2.5 kpc, respectively. These are among the first models of WR stars in galaxies beyond the Local Group, and are compared with early WC stars in our Galaxy and LMC.Comment: 12 pages, 12 figures, submitted to A&A (includes aa.cls) - version with higher resolution finding charts available from ftp://ftp.star.ucl.ac.uk/pub/pac/ngc300.ps.g

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    A Multiwavelength Study of Evolved Massive Stars in the Galactic Center

    Full text link
    The central region of the Milky Way provides a unique laboratory for a systematic, spatially-resolved population study of evolved massive stars of various types in a relatively high metallicity environment. We have conducted a multi-wavelength data analysis of 180 such stars or candidates, most of which were drawn from a recent large-scale HST/NICMOS narrow-band Pa-a survey, plus additional 14 Wolf-Rayet stars identified in earlier ground-based spectroscopic observations of the same field. The multi-wavelength data include broad-band IR photometry measurements from HST/NICMOS, SIRIUS, 2MASS, Spitzer/IRAC, and Chandra X-ray observations. We correct for extinctions toward individual stars, improve the Pa-a line equivalent width measurements, quantify the substantial mid-IR dust emission associated with WC stars, and find X-ray counterparts. In the process, we identify 10 foreground sources, some of which may be nearby cataclysmic variables. The WN stars in the Arches and Central clusters show correlations between the Pa-a equivalent width and the adjacent continuum emission. However, the WN stars in the latter cluster are systematically dimmer than those in the Arches cluster, presumably due to the different ages of the two clusters. In the EW-magnitude plot, WNL stars, WC stars and OB supergiants roughly fall into three distinct regions. We estimate that the dust mass associated with individual WC stars in the Quintuplet cluster can reach 1e-5 M, or more than one order of magnitude larger than previous estimates. Thus WC stars could be a significant source of dust in the galaxies of the early universe. Nearly half of the evolved massive stars in the GC are located outside the three known massive stellar clusters. The ionization of several compact HII regions can be accounted for by their enclosed individual evolved massive stars, which thus likely formed in isolation or in small groups.Comment: Accepted for publication in MNRA

    A comparison of taxon co-occurrence patterns for macro- and microorganisms

    Get PDF
    We examine co-occurrence patterns of microorganisms to evaluate community assembly “rules.” We use methods previously applied to macroorganisms, both to evaluate their applicability to microorganisms and to allow comparison of co-occurrence patterns observed in microorganisms to those found in macroorganisms. We use a null model analysis of 124 incidence matrices from microbial communities, including bacteria, archaea, fungi, and algae, and we compare these results to previously published findings from a meta-analysis of almost 100 macroorganism data sets. We show that assemblages of microorganisms demonstrate nonrandom patterns of co-occurrence that are broadly similar to those found in assemblages of macroorganisms. These results suggest that some taxon co-occurrence patterns may be general characteristics of communities of organisms from all domains of life. We also find that co-occurrence in microbial communities does not vary among taxonomic groups or habitat types. However, we find that the degree of co-occurrence does vary among studies that use different methods to survey microbial communities. Finally, we discuss the potential effects of the undersampling of microbial communities on our results, as well as processes that may contribute to nonrandom patterns of co-occurrence in both macrobial and microbial communities such as competition, habitat filtering, historical effects, and neutral processes

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    Practical Approach to Surge and Surge Control Systems

    Get PDF
    TutorialPg. 147-174This paper addresses the area of compressor stability, surge and surge control and relates to the practical aspects involved. An emphasis is placed on the physical understanding of surge phenomena and on the practical limitations of surge control systems. Topics discussed are physical interpretation of instability, causative factors, types of stall, machine and process design factors, surge effects and characteristics, control system types and practical application aspects. Some case studies also are presented. The discussion primarily relates to centrifugal compressors, but several aspects pertain to axial flow compressors as well. The paper is split into three sections: Section A consists of an introduction to surge and a discussion of centrifugal compressor design and process factors that affect operating stability. Section B discusses the various types of control schemes and surge protection devices. Several examples and common pitfalls are addressed. Section C addresses the important design tool, surge system simulation. Several references are provided to enable the reader to pursue this topic in greater detail

    The VLT-FLAMES Tarantula Survey XVIII. Classifications and radial velocities of the B-type stars

    Get PDF
    We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 ± 12.2 kms-1 from 273 presumed single stars. Employing a 3σ criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (≥345 kms-1) or small (≤65 kms-1) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (−106.9 ± 16.2 kms-1), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12 + log (N/H) ≳ 8.5. Combined with a large rotational velocity (ve sin i = 345 ± 22 kms-1), this is suggestive of past binary interaction for this star

    On the origin of the O and B-type stars with high velocities II Runaway stars and pulsars ejected from the nearby young stellar groups

    Get PDF
    We use milli-arcsecond accuracy astrometry (proper motions and parallaxes) from Hipparcos and from radio observations to retrace the orbits of 56 runaway stars and nine compact objects with distances less than 700 pc, to identify the parent stellar group. It is possible to deduce the specific formation scenario with near certainty for two cases. (i) We find that the runaway star zeta Ophiuchi and the pulsar PSR J1932+1059 originated about 1 Myr ago in a supernova explosion in a binary in the Upper Scorpius subgroup of the Sco OB2 association. The pulsar received a kick velocity of about 350 km/s in this event, which dissociated the binary, and gave zeta Oph its large space velocity. (ii) Blaauw & Morgan and Gies & Bolton already postulated a common origin for the runaway-pair AE Aur and mu Col, possibly involving the massive highly-eccentric binary iota Ori, based on their equal and opposite velocities. We demonstrate that these three objects indeed occupied a very small volume \sim 2.5Myr ago, and show that they were ejected from the nascent Trapezium cluster. We identify the parent group for two more pulsars: both likely originate in the 50 Myr old association Per OB3, which contains the open cluster alpha Persei. At least 21 of the 56 runaway stars in our sample can be linked to the nearby associations and young open clusters. These include the classical runaways 53 Arietis (Ori OB1), xi Persei (Per OB2), and lambda Cephei (Cep OB3), and fifteen new identifications, amongst which a pair of stars running away in opposite directions from the region containing the lambda Ori cluster. Other currently nearby runaways and pulsars originated beyond 700 pc, where our knowledge of the parent groups is very incomplete.Comment: Accepted for publication in the A&A. 29 pages, 19 figure
    corecore