316 research outputs found

    A caffeine-sensitive membrane electrode: Previous misleading report and present approach

    Get PDF
    Although a previous study [S.S.M. Hassan, M.A. Ahmed, M.M. Saoudi, Anal. Chem. 57 (1985) 1126] had shown that a caffeine-sensitive electrode made with picrylsulfonate and 1-octanol as a cation-exchanger and a solvent mediator, respectively, had a wide working pH range (5.5-9.5) and exhibited a Nernstian response, we could not find such response in this electrode. The present result was reasonable, because the pK, value of caffeinium ion was reported to be around 0.7 and the neutral form of caffeine was predominant in the pH range examined. Thus, we reinvestigated the response characteristics of a caffeine electrode, taking into consideration the pKa value, and constructed a new electrode with a combination of the lipophilic cation-exchanger, tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate (HFPB), and the solvent mediator with high degree of dielectric constant, 2-fluoro-2'-nitrodiphenyl ether (FNDPE). This electrode showed a pH-dependent response to caffeinium ion and gave a detection limit of 50 mu M with a slope of 55 mV per concentration decade at pH 2. The use of other solvent mediators was less effective than that of FNDPE. The electrode was applied for the determination of caffeine in some central stimulants

    Back to BAC: The Use of Infectious Clone Technologies for Viral Mutagenesis

    Get PDF
    Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses

    Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64

    Get PDF
    The AP2/EREBP genes play various roles in developmental processes and in stress-related responses in plants. Genome-wide microarrays based on the gene expression profiles of the AP2/EREBP family were analyzed under conditions of normal growth and drought stress. The preferential expression of fifteen genes was observed in specific tissues, suggesting that these genes may play important roles in vegetative and reproductive stages of growth. A large number of redundant genes were differentially expressed following phytohormone treatments (NAA, GA3, KT, SA, JA, and ABA). To investigate the gene expression responses in the root, leaf, and panicle of three rice genotypes, two drought stress conditions were applied using the fraction of transpirable soil water (FTSW) under severe (0.2 FTSW), mild (0.5 FTSW), and control (1.0 FTSW) conditions. Following treatment, transcriptomic analysis using a 44-K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from two near-isogenic lines, IR77298-14-1-2-B-10 (drought tolerant) and IR77298-14-1-2-B-13 (drought susceptible), under drought stress conditions. The majority of the genes that were activated in the IR77298-14-1-2-B-10 line were members of the AP2/EREBP gene family. Non-redundant genes (sixteen) were found in the drought-tolerant line, and four genes were selected as candidate novel reference genes because of their higher expression levels in IR77298-14-1-2-B-10. Most of the genes in the AP2, B3, and B5 subgroups were involved in the panicle under severe stress conditions, but genes from the B1 and B2 subgroups were down-regulated in the root. Of the four subfamilies, RAV exhibited the highest number of up-regulated genes (80%) in the panicle under severe stress conditions in the drought-tolerant line compared to Minghui 63 under normal conditions, and the gene structures of the RAV subfamily may be involved in the response to drought stress in the flowering stage. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis

    Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes

    Get PDF
    Abstract Background Upstream open reading frames (uORFs) can mediate translational control over the largest, or major ORF (mORF) in response to starvation, polyamine concentrations, and sucrose concentrations. One plant uORF with conserved peptide sequences has been shown to exert this control in an amino acid sequence-dependent manner but generally it is not clear what kinds of genes are regulated, or how extensively this mechanism is invoked in a given genome. Results By comparing full-length cDNA sequences from Arabidopsis and rice we identified 26 distinct homology groups of conserved peptide uORFs, only three of which have been reported previously. Pairwise Ka/Ks analysis showed that purifying selection had acted on nearly all conserved peptide uORFs and their associated mORFs. Functions of predicted mORF proteins could be inferred for 16 homology groups and many of these proteins appear to have a regulatory function, including 6 transcription factors, 5 signal transduction factors, 3 developmental signal molecules, a homolog of translation initiation factor eIF5, and a RING finger protein. Transcription factors are clearly overrepresented in this data set when compared to the frequency calculated for the entire genome (p = 1.2 × 10-7). Duplicate gene pairs arising from a whole genome duplication (ohnologs) with a conserved uORF are much more likely to have been retained in Arabidopsis (Arabidopsis thaliana) than are ohnologs of other genes (39% vs 14% of ancestral genes, p = 5 × 10-3). Two uORF groups were found in animals, indicating an ancient origin of these putative regulatory elements. Conclusion Conservation of uORF amino acid sequence, association with homologous mORFs over long evolutionary time periods, preferential retention after whole genome duplications, and preferential association with mORFs coding for transcription factors suggest that the conserved peptide uORFs identified in this study are strong candidates for translational controllers of regulatory genes.</p

    Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    Get PDF
    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations

    C. PRESL) at the transcriptional level.

    Get PDF
    This paper investigates differences in gene expression among the two Thlaspi caerulescens ecotypes La Calamine (LC) and Lellingen (LE) that have been shown to differ in metal tolerance and metal uptake. LC originates from a metalliferous soil and tolerates higher metal concentrations than LE which originates from a non-metalliferous soil. The two ecotypes were treated with different levels of zinc in solution culture, and differences in gene expression were assessed through application of a cDNA microarray consisting of 1,700 root and 2,700 shoot cDNAs. Hybridisation of root and shoot cDNA from the two ecotypes revealed a total of 257 differentially expressed genes. The regulation of selected genes was verified by quantitative reverse transcriptase polymerase chain reaction. Comparison of the expression profiles of the two ecotypes suggests that LC has a higher capacity to cope with reactive oxygen species and to avoid the formation of peroxynitrite. Furthermore, increased transcripts for the genes encoding for water channel proteins could explain the higher Zn tolerance of LC compared to LE. The higher Zn tolerance of LC was reflected by a lower expression of the genes involved in disease and defence mechanisms. The results of this study provide a valuable set of data that may help to improve our understanding of the mechanisms employed by plants to tolerate toxic concentrations of metal in the soil

    Genetic engineering to improve quality, productivity and value of crops

    No full text
    Over the next 25 years, we believe that the most significant changes in crops will come about by applying genetic engineering tools. Crops may be bioengineered to produce modified kinds of starch, oils and high-value proteins for better nutrition, medical diagnostics and industrial uses. For example, walnuts and peanuts containing healthier oils, along with oxidative stability, could become available to consumers. Seedless vegetables and other fruits should appear in the marketplace within 10 years. Oil-producing seed crops may be modified to create specialty oils for a variety of nonfood products such as detergents, lubricants, inks and dyes. Feed seeds engineered to produce higher concentrations of sulfur-containing amino acids could improve wool growth in sheep. Plants could be modified to deliver oral vaccines that prevent diseases such as hepatitis and influenza. Strawberries are being targeted by genetic engineering to extend their shelf life, and within 25 years fields may be planted with varieties that allow farmers to control the timing of fruit production. Although currently controversial, we believe genetic engineering will prove to be invaluable to the future improvement of agricultural systems. To enhance the competitiveness of California agriculture, government, university scientists and industry must work together to ensure the application of genetic engineering tools to improve crops
    corecore