14 research outputs found

    Conocimientos tradicionales relativos a la biodiversidad agrícola

    Get PDF
    La biodiversidad agrícola, a diferencia de la silvestre, requiere la acción continuada de los agricultores para su conservación, ya que las plantas cultivadas dependen de la intervención humana, con actividades como la selección, la siembra, el abonado, la poda u otras prácticas agrícolas para su supervivencia. Desde la revolución agrícola del Neolítico hasta la actualidad, estas prácticas y conocimientos han ido generando y conservando una gran diversidad, amenazada a partir de la segunda mitad del siglo XX por las causas que se han indicado anteriormente.Peer reviewe

    New tools and routines for ecotechnological slope stability analysis

    Full text link
    El uso de material vegetal vivo y materiales biodegradables en las obras de estabilización, control de erosión y, en general, restauración ecológica, incluyen en la fase diseño una serie de particularidades a las que la ingeniería civil tradicional no tiene que enfrentarse. Es precisamente esta característica la que está ralentizando la adopción de las técnicas de bioingeniería en el mundo de la obra civil y la geotecnia. La utilización de un lenguaje común entre el mundo de la restauración ecológica y la ingeniería tradicional permitirá tender puentes entre ambas disciplinas y mejorar tanto su colaboración como sus sinergias. Por otro lado, la anterior situación también limita las posibilidades de estandarización e inclusión en pliegos de condiciones de las técnicas de bioingeniería. El objetivo general principal de este trabajo consiste, pues, en aportar nuevas herramientas de calculo y diseño para apoyar el proceso de especialización del sector de la eco-ingeniería y facilitar la transición de los técnicos de la ingeniería civil y la geotecnia al mundo de las obras de restauración ecológica. Para dar respuesta a esta empresa, este trabajo se ha estructurado en cuatro bloques. Un primer bloque aportando un nuevo método para mejorar la simulación del comportamiento mecánico de un suelo con raíces. Un segundo bloque, aportando nuevas metodologías de diseño que incluyan las particularidades de las obras de eco-ingeniería. Un tercer bloque donde se desarrolla una metodología no invasiva para facilitar la toma de datos necesaria para simular los efectos de la vegetación en los análisis de estabilidad. Finalmente, en el cuarto bloque se analiza la evolución de una obra de eco ingeniería para mostrar la gran importancia que tiene la fase de seguimiento en este tipo de obras. ABSTRACT The use of both living plant material and biodegradable materials in slope stabilization and erosion control works, include several particularities at the design level stage that traditional civil and geotechnical engineering do not need to face. This situation is slowing down the incorporation of eco-engineering techniques in traditional engineering sectors. The use of a common language between ecological restoration and traditional engineering will permit building bridges between them as well as improving their collaboration possibilities and synergies. On the other hand, the preceding situation also limits the necessary standardisation process of the eco-engineering works and their inclusion at the procurement stage. The main aim of this work consists in contributing with new design tools to both support the specialisation process of the eco-engineering sector and offer an easier transition for civil and geotechnical engineers to the ecological restoration world. In order to give a suitable answer to the preceding objectives this work has been organised into four blocks. A first block where a new methodology, allowing for a more realistic rooted soil mechanical behaviour simulation, is offered. A second block introducing new design methodologies including the eco-engineering work particularities. A third block, where a non-invasive field work scheme for determining, in a cost effective way, useful information for incorporating the plant effects into soil stability analyses. Finally, a fourth block where an eco-engineering work evolution is analysed in an attempt to highlight the great importance of the monitoring stage in this type of works

    Soil and Water Bioengineering as Natural-Based Solutions

    No full text
    Soil and water bioengineering (SWB) is a discipline that combines technology with biology, making use of native plants and plant communities as construction material for erosion control in degraded environments. The term engineering refers to the use of technical and scientific data for constructive, stabilization and erosion control purposes and “bio” because these functions are related to living organisms, mainly native plants with biotechnical characteristics and with the purpose of restoring ecosystems and increasing biodiversity. In this approach, native plant communities’ potential is a key factor to achieve the overall objectives of planned interventions. SWB work designs involve both the integration of intrinsic adaptive information processes and legitimate design approaches (i.e. engagement of stakeholders into the project and work strategy). SWB encompass nature-based solutions (NBSs) which offer sustainable solutions in order to mitigate and adapt to climate change and effective restoration approaches suitable for degraded situations. Nowadays there is a rising awareness that nature is a very powerful source of viable solutions that use and deploy the properties of natural ecosystems and services. SWB practice is in accordance with the principles of NBSs “inspired and supported by nature”. Nature-based solutions provide sustainable, cost-effective, multipurpose and flexible alternatives for various objectives: technical, ecological, landscape integration and socioeconomics. In this context, SWB techniques offer interesting synergies with urban green and blue infrastructure strategies

    Proyecto Ecomed: formación especializada en bioingeniería del suelo y fluvial en el entorno mediterráneo

    No full text
    Soil and water bioengineering involves the use of living plants or cut plant material, either alone or in combination with inert structures, to control soil erosion and the mass movement. Soil bioengineering is such a method that is being more and more adopted within the Mediterranean ecoregion. Bioengineering works have a clear dynamic and changing nature. At the beginning, the initial necessary rigidity is offered by the inert material utilized in the work, As time progresses, the evolving vegetation takes over the stabilizing roles. These particularities influence the design protocols and routines of this type of works. The difficulties engaged when using soil bioengineering in Mediterranean ecoregion requires a highly specialized knowledge triangle within the sector. The Ecomed Erasmus + project gives answer to this situation by including, as one of its main outputs, the development of a specialized modular training programme in soil and water bioengineering in the Mediterranean ecoregion.La bioingeniería del suelo y fluvial son un conjunto de técnicas basadas en la naturaleza (NBSs) cuyo objetivo es la mejora de la resiliencia de espacios con problemas de estabilidad y/o erosión. Estas técnicas están ganando fuerza dentro de las regiones mediterráneas. Las obras de bioingeniería tienen una naturaleza dinámica. Al principio, la necesaria rigidez inicial se desarrolla a través de los materiales inertes utilizados en la obra. Con el paso del tiempo, la vegetación desarrolla el efecto de refuerzo necesario y sustituye a los anteriores elementos en su función estabilizadora. Esta particularidad afecta a los protocolos y metodologías de cálculo de este tipo de obras. Los trabajos de seguimiento de la evolución de la intervención son esenciales para generar retroalimentaciones que permitan mejorar y calibrar los diseños de este tipo de obras. Las dificultades que afrontan este tipo de trabajos en un clima mediterráneo requieren un triángulo de conocimiento altamente especializado (nuevos procesos, métodos y servicios) dentro del sector. Teniendo en cuenta todo lo anterior, el Proyecto Europeo ECOMED (ERASMUS +) tiene, como uno de sus objetivos principales, generar para 2018 un programa de aprendizaje teórico-práctico específico y esencial para la especialización del sector de la bioingeniería mediterránea

    Making Sense of Language Signals for Monitoring Radicalization

    No full text
    Understanding radicalization pathways, drivers, and factors is essential for the effective design of prevention and counter-radicalization programs. Traditionally, the primary methods used by social scientists to detect these drivers and factors include literature reviews, qualitative interviews, focus groups, and quantitative methods based on surveys. This article proposes to complement social science approaches with computational methods to detect these factors automatically by analyzing the language signals expressed in social networks. To this end, the article categorizes radicalization drivers and factors following the micro, meso, and macro levels used in the social sciences. It identifies the corresponding language signals and available language resources. Then, a computational system is developed to monitor these language signals. In addition, this article proposes semantic technologies since they offer unique exploration, query, and discovery capabilities. The system was evaluated based on a set of competency questions that show the benefits of this approach. View Full-Text

    Sustainability of traditional ecological knowledge: importance, distribution, endemicity and conservation of Spanish medicinal plants

    No full text
    Trabajo presentado en la 58th Annual Meeting of the Society for Economic Botany (Living in a global world: local knowledge ans sustainability), celebrada en Braganza (Portugal) del 4 al 9 de junio de 2017.-- IECTB authors: L Aceituno, R Acosta, A Alvarez, E Barroso, J Blanco, MA Bonet, L Calvet, E Carrio, R Cavero, U DAmbrosio , L Delgado, J Fajardo, I Fernandez-Ordonez, J Garcia, T Garnatje, JA Gonzalez, R Gonzalez-Tejero, A Gras, E Hernandez-Bermejo, E Laguna, JA Latorre, C. Lopez, MJ Macia, E Marcos, V Martinez, G Menendez, M Molina, R Morales, LM Munoz, C Obon, R Ontillera, M Parada, A Perdomo, I Perez, MP Puchades, V Reyes-Garcia, M Rigat, S Rios, D Rivera, R Rodriguez, O Rodriguez, R Roldan, L San Joaquin, FJ Tardio, JR Vallejo, J Valles, H Velasco and A Verde.More than 17,000 of the plant species of the world have been used as medicines. The Mediterranean basin, and specifically Spain, has a great floristic and ethnobotanical richness, comprising its useful flora around 3,000 plant species. This paper studies medicinal plants traditionally used in Spain in order to analyze the sustainability of their exploitation. Given that sustainability is related to the amount of the resource and its gathering pressure, its availability and cultural importance were analysed based on: the number of papers cited from a selection of over 180 papers, the number of 10x10 km UTM grid cells in which the plants were represented, the number of phytosociological inventories in which the presence of the plant has been registered, and searched on their current conservation status in European, national and regional legislations. The total number of wild or naturalized medicinal species in Spain reaches 1,393, 15% of them being endemic. A positive correlation was found among cultural importance and abundance (ρ=0.48) and among cultural importance and distribution (ρ=0.502), showing that abundant widely distributed species are those more commonly used. Most of the medicinal plants (72%) do not appear on the consulted regulations and do not have any legal protection or known threat and only 11 species are registered in any of the annexes of the European Habitats directive. While this study confirms that people tend to select as medicinal abundant and widely distributed species, many other criteria are used for selecting them.Peer reviewe
    corecore