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Abstract 

Eco-engineering techniques involve the use of both plants and inert materials 

where, in the latter, non-treated wood is usually present. The two different elements will 

both evolve with time and change their mechanical properties differently. On one hand, 

the wood will degrade decreasing its effective cross sectional area with time. On the 

other hand, the live plant material will grow and propagate new roots as time 

progresses. Both root development and inert material changes must be accounted for 

in order to realistically simulate a bioengineered slope evolution and design effective 

eco-engineering solutions. 

The dynamic nature of a bioengineered work sets different scenarios throughout 

the slope design life. All these different stages must be taken into account in the work 

design process. In this work, we propose an adaptation of the existing routines and 

procedures of both geotechnical practice and civil engineering design scheme in order 

to closely reflect the inclusion of bioengineering methods in the classic geotechnical 
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engineering problems. A design methodology covering different critical points within the 

lifecycle of a bioengineered slope is proposed and put into practice into the design 

stage for a case study in Scotland. By detecting critical points at the design stage the 

proposed methodology was proven to offer an improved eco-engineering work design 

scheme. With the use of the proposed method both external and internal stability 

checks with their corresponding safety factor values increase with time and there are 

no conflicts between the two evolving processes involved in this kind of works. 

 

Keywords: bioengineered slope, reinforced slope, roots, slope stability, soil 

reinforcement, wood decay, durability 

 

1. Introduction 

Ground bio-engineering, also termed eco-engineering, is the use of living plants 

or cut plant material, either alone or in combination with inert structures, to control soil 

erosion and the mass movement of land in order to fulfil engineering functions 

(Schiechtl, 1988). The self-repairing characteristics of the vegetation used, and the 

resilience capacity of the bioengineered area (Mickovski, 2014) are very important 

allies in the eco-engineering design philosophy. 

The eco-engineering solutions have inherent advantages over classic civil 

engineering solutions with respect to economy, ease of construction, low landscape 

impact and opportunities for incorporation of vegetation or plantings within the structure 

(Gray and Sotir, 1996). One of the main design disadvantages are related to this latter 

issue since the use of both living and inert biological materials (e.g. wood) involves 

incorporating temporary variable elements in terms of design and performance 

reliability of the eco-engineering works (Stokes et al., 2014). The eco-engineering 

philosophy follows the sustainability idea of design with readily available materials on 

or adjacent to the site which involves the use of materials such as wood or rocks. The 
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use of wood coming from nearby silvicultural treatments (Coppin and Richards, 1990) 

entails the use of materials with a wide variety of properties (young and mature wood) 

from different species. 

The eco-engineering solutions provide a combination of the benefits of 

immediate protection against soil instability and the long-term stabilisation due to the 

reinforcement effect of the roots on the soil. As with any stabilization technique, there is 

a stress (or load) transfer between the soil and the structure but, in contrast to other 

solutions, this initial response is substituted by an evolving role of the living material 

used in the eco-engineering work as the time progresses. Once the plants become 

established, the subsequent vegetation gradually takes on more of the structural 

function of the inert members (Gray and Sotir, 1996). The way roots reinforce soil can 

be explained by both mechanical and hydrological effects. From the former 

perspective, roots can bind the soil together and contribute to both a higher soil bearing 

capacity and shear strength (Willatt and Sulistyaningsih, 1990) whereas, from the 

latter, they can decrease the soil pore water pressures and, therefore, soil effective 

stresses (Terzaghi´s principle; Lambe and Whitman, 1979) thus improving the slope 

stability. 

Over the past eighty years, extensive engineering and research studies have 

provided a sound set of soil mechanical principles and analytical procedures for slope 

stabilization (Terzaghi, 1936; Sowers, 1979; Duncan and Wright, 2005). An improved 

understanding of the changes in soil properties that can occur over time is one of the 

most important developments of slope stability design schemes. The presence of other 

material in the soil (including plant roots) changes the properties of the continuum and, 

if these changes can be predicted, the engineers can choose the best additions for 

stability. The recognition of the requirements and limitations for the use of non-inert 

(live) material in slope stability design standards would usher in a more mature phase 

of the use of ecotechnological solutions for soil stabilisation purposes. 
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With bioengineered slopes, the nature of the materials used generates a natural 

evolving dynamic into the slope design life. One of the most important changes in the 

soil conditions takes place when plants, the live components, begin to grow and 

propagate new roots (Bischetti et al., 2009). Besides, the wood, one of the inert 

components used in eco-engineering techniques, is generally not treated and, as a 

consequence of this, its mechanical properties deteriorate as time progresses 

(Leicester et al., 2003). Therefore, for bioengineering slope design the time and 

elements durability must be considered more explicitly throughout the design life of the 

slope. 

The existing structural timber design standards (e.g. EN 1995-1-

1:2004/A1:2008 Eurocode 5) provide a regulatory framework for eco-engineering work 

design. Similarly, the existing structural/geotechnical design procedures for slope 

stabilisation solutions (e.g. manufacturers standard designs, trade associations 

standard designs, state and federal agencies, Eurocode 7, etc.) do not accommodate 

the particularities derived from the dynamic and changing nature of the eco-

engineering solutions. However, the eco-engineering design is more complex due to 

both the presence of different materials and the need to take into account the 

combination and integration of the particularities of the wooden elements used for 

specific eco-engineering works (e.g. wood decay rate, wood natural durability and the 

use of small diameter round wood) with the live materials used. Furthermore, the 

ground bioengineering techniques are designed according to soil stabilization or 

geotechnical design general methodologies (Coppin and Richards, 1990; Menegazzi 

and Palmeri, 2013) and they do not have a standardised specific approach as it is the 

case with other traditional stabilisation techniques. To the best of our knowledge, the 

engineering approach comprising a sequence of stages reflecting the design life stages 

and associated changes in the eco-engineering structure has not yet been applied to 

eco-engineering design. 
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To cover the apparent gap in the design with vegetation for stability (Stokes et 

al., 2014), there is a need for a clear methodology, based on existing 

structural/geotechnical design procedures, to put the eco-engineering solution design 

into practice and justify its application from sustainability, resilience and stability point 

of view (Mickovski, 2014). The aim of this paper is to use the existing engineering 

approach and attempt incorporating both wood deterioration and live plant processes 

and effects within a temporal framework. To achieve this, our objectives are to 

integrate the stress transfer process between the inert elements and the vegetation, as 

well to incorporate both the typical dynamic nature and the evolution of an eco-

engineering work into eco-engineering design methodologies, demonstrated on a real 

life case study. 

 

2. Materials and methods 

2.1. Background 

In designing and constructing new earthwork slopes, it is important to attempt to 

anticipate the relevant changes in properties and conditions that may affect them 

during the design, ensuring that the stability is not compromised by any foreseeable 

change (Duncan and Wright, 2005). In the case of bio-engineered slopes, one of the 

major changes in the long term is the growth and development of the plants used in 

conjunction with inert materials. Additionally, the changes in the loads or stresses 

acting on the slope will result in changes in the stability of the slopes. Therefore, it is 

often necessary to perform stability analyses corresponding to several different 

scenarios, reflecting different stages in the life of a slope. This is a well established 

principle in the standard slope stability design (Duncan and Wright, 2005; EN 1997 

Eurocode 7), and it should be applied to bioengineered slopes because a changing 

scenario during the slope design life is in the very core of the ecotechnological solution 

design and philosophy. The two main elements involving changes in an eco-
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engineering technique stability checks during the slope design life are the wooden 

elements and the plants. While wooden elements will degrade with time, the plants´ 

roots will develop and grow. 

2.1.1. Wood durability 

The inherent ability of wood species to resist biological deterioration is referred 

to as natural durability or decay resistance (Eaton and Hale, 1993; Johnson et al., 

2006). Natural durability varies between wood species (e.g. State Forests of New 

South Wales, 1995) and is explained mainly by the composition and amount of wood 

extractives (Eaton and Hale, 1993). Generally, sapwood is the least durable wood part 

(Figure 1), while heartwood cannot be treated and therefore its durability is dictated by 

its natural durability class (State Forests of New South Wales, 1995). Knowledge about 

natural durability is obtained by field and laboratory tests (e.g. Princes Risborough 

Laboratory, 1976; Leicester et al., 2003) as well as by practical experience of the end 

users (Willeitner and Peek, 1997).  

 

Figure 1 a) Wood parts, b) deterioration rates for the different wood parts (adapted from 

Leicester et al. (2003) 

The existing models for simulating wood deterioration processes (e.g. Scheffer, 

1971; Leicester et al., 2003), idealise the process to be bi-linear (Leicester et al., 2003) 

(Figure 2) where the untreated wood in the ground would steadily decay along the 

perimeter after a time lag of decay. The rate of decay (mm/year) can be calculated as: 
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atecwood kkr lim⋅=        Eq. 1 

While Kclimate depends on mean precipitation value, mean annual temperature 

and the number of dry months on the site (see Leicester et al., 2003), Kwood depends on 

the type of wood (Leicester et al., 2003). 

The lag time (years) for the sapwood (which is the wood with the least durability 

and would decay first; Fig. 1) can be estimated in terms of the sapwood decay rate 

(rsapwood) as shown in Eq. 2 (Wang et al., 2007): 

95.0
_ 5.5 −⋅= sapwoodsapwoodlag rt       Eq. 2  

According to the preceding model the decay progresses inwards while the 

remaining wood keeps the initial mechanical properties. Therefore, if at a time t the 

decay depth is dt (mm) (Fig. 2), the bending strength can be calculated as (Wang et al., 

2007): 

dt fdDR 3)2(
32

−=
π

        Eq. 3 

Where D is the initial diameter (mm) and fd is the design strength value which is 

calculated by using both characteristic strength values and structural design standards 

(e.g. EN 1995-1-1:2004/A1:2008 Eurocode 5). Characteristic strength values of undecayed 

wood can be found in the literature or measured in the laboratory (de Vries, 1998; 

Ranta-Maunus et al., 1998). 

In a wooden element, the service life is assumed to be the time at which its 

residual strength decreases to 70% of its original strength (Wang et al., 2007). For the 

case of a circular wooden element of initial diameter D (mm) subjected to bending, the 

decay depth (mm) at service life, dL(years), is (Leicester et al., 2003): 

DdL ⋅−= )7.01(
2
1 3

1
       Eq. 4 

Then, the service life L (years) (see Fig. 2) is estimated taking into account 

either the decay lag (tlag, Eq. 2) or the decay rate (r, Eq. 1) as shown in Eq. 5. 
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r
dtL L

lag +=         Eq. 5 

 

Figure 2 a) Diameter variation and decay depth (dt), b) idealised progress of decay 

depth with time (adapted from Leicester et al., 2003). tlag (lag time) and L (service life) are 

shown. 

Apart from the decay effects, the physical and mechanical properties (density, 

strength, elasticity; Simpson and Wang, 2001) of wood are affected by its moisture 

content (MC) because of its hygroscopic nature. The wood exchanges its moisture 

content (MC) with the outer atmosphere until equilibrium moisture content (EMC) is 

achieved. Generally, this occurs in the course of the first year of exposure (Forest 

Products Laboratory, 1999). EMC values vary with both relative atmospheric humidity 

and temperature (Forest Products Laboratory, 1999). In wood structure calculation 

standards both physical and mechanical properties refer to 12% moisture content 

(MC). As the in situ wood would have different MC, in order to calculate the density of 

such wood at EMC, a 0.5% adjustment is made for every percentage point difference in 

moisture content between EMC and MC (EN 384:2010). 

2.1.2. Plants 

Plants have both beneficial and adverse effects on slope stability and are the 

most variable element in an eco-engineering intervention. The way in which vegetation 

enhances mass stability is both via root reinforcement and via soil moisture depletion. 

Mechanical effects of vegetation on slope stability have been extensively documented 
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overtime (e.g. Wu et al., 1979; Norris et al., 2008; Stokes et al., 2014). Among the main 

adverse effects of vegetation are the windthrow and the surcharge because of the 

vegetation weight. Models related to either plant growth or root distribution with depth 

are very useful for incorporating new effects in eco-engineering techniques design 

because roots take the loads and distribute into soil. Small vegetation roots reinforce 

the soil providing and added cohesion value (Waldron, 1977) which can be included in 

the Mohr-Coulomb constitutive equation (Wu et al., 1979; Ekanayake and Phillips, 

2002; Stokes et al., 2008) for soil strength. 

Under field conditions, roots occur in different sizes and lengths and can have 

different tensile strengths and degrees of fixity. Accordingly, two failure mechanisms 

are predominant in a deforming rooted soil: root tensile break mode and root pull-out 

mode (Waldron and Dakessian, 1981). For preliminary assessment of vegetation 

reinforcement, a simple breakage model (perpendicular reinforcement model; Wu et 

al., 1979) can be used assuming all roots break in tension under load. This should be 

used with caution because of its simplicity, reduced amount of input parameters (Root 

Area Ratio at depth z – RAR(z) and root tensile strength Tr; Eq. 6) and observed 

realistic application (Mickovski et al., 2008). It must be borne in mind that only small 

roots (diameter < 10 mm) are considered in this model to compute the added cohesion 

value (cr), since big roots only contribute to slope stability as structural anchorage 

(Mickovski et al., 2009). 

rr TzRARc ⋅⋅= )(2.1        Eq. 6 

Root pullout mechanism depends on the root anchorage length, soil type, root 

physical properties and root system architecture. When a root is not long enough it will 

tend to slip or pull-out when the soil-root composite is sheared. Assessing the pull-out 

resistance for quantification of root reinforcement has been analysed by several 

authors (Norris, 2005; Mickovski et al., 2005). Vertical uprooting of whole plants has 
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been also used to determine the contribution of a root system to soil fixation (Norris, 

2005). Lateral plant uprooting (or overturning) has been investigated by winch 

experiments (e.g. Crook and Ennos, 1996; Coutts et al., 1998; Mickovski and Ennos, 

2002; Mickovski and Ennos, 2003; Cucchi et al., 2004; Stokes et al., 2007).  

Root system morphology and properties can be studied by field techniques (e.g. 

Böhm, 1979; Van Noordwijk et al., 2000) or indirectly estimated from theoretical root 

distribution models (Laio et al., 2006; Preti et al., 2010) that only need readily available 

long-term climatic and pedological parameters and a species–specific scaling factor. 

Published literature (e.g. Francis et al., 2005; Schenk and Jackson, 2002; Waisel et al., 

2002) includes data of root systems of the most common living material used in 

ecotechnological solutions.  

2.1.3. External and internal stability 

As with any stabilization structure, eco-engineering solutions must be checked 

from a structural point of view to ensure that the external (sliding, overturning, bearing 

capacity and slope failure; Fig. 3) and internal stability are satisfactory and these 

checks must include both decay and plant effects in order to reflect the changes during 

the lifetime of the eco-engineered solution. In the case of wooden elements, the 

internal stability calculation is based on the governing timber structural design (EN 

1995-1-1:2004/A1:2008 Eurocode 5). On the other hand, the external stability checks are 

usually performed in line with existing geotechnical engineering design standards and 

the stability is expressed in terms of a Factor of Safety (FoS; e.g. Tardio and Mickovski, 

2015). In this study, we have adopted the FoS expressions for bare and vegetated soil 

(Gray and Sotir, 1996) and use lumped global FoS for the sliding and overturning 

checks since the purpose on this paper is to show how the different stability checks 

vary with time. The resistance to sliding (FoSs) will be affected by evolution of the RAR 

value with time across the sliding plane (Preti and Cantini, 2002) while the resistance to 

overturning (FoSo) will be affected by the pull out force evolution with time due to root 
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growth (Figure 3). The global stability of eco-engineered slope can then be assessed 

using existing slope stability analysis methods (Duncan and Wright, 2005) taking into 

account both long term (drained) and short term (undrained) scenarios.  

 

 

Figure 3 A) Sliding check, B) overturning check, C) slope failure check. The roots effect 

(if applicable) is highlighted in a circle 

 
2.2. Approach and methodology 

In order to include the variation of strength in both living and inert components 

of the eco-engineering solution and assess its effect on the stability of the system with 

time (Gray and Sotir, 1996), monitoring and adaptation of the stability check 

methodology are required. Based on durability considerations, the eco-engineered 

slope design must include at least two stages: before the plants have propagated roots 

(traditional/standard design of stabilization projects) and after the propagation of new 

roots which affect the soil mechanical properties (newly proposed methodology). Within 

the latter, intermediate scenarios making allowance for the stress transfer phenomena 

between the wood or inert material and the plants should be considered before the last 

scenario where living plants are considered to be the major source of the overall 
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system stability. In this latter case, the wooden materials accompanying the plants 

would have already fully decayed or are considered ineffective for stabilization 

purposes. This new proposed methodology fits well within the generic geotechnical 

design framework where several stages or design situations must be analysed over 

time (EN 1997 – Eurocode 7: Geotechnical design) and the analysis of the structure at 

different time stages incorporates different values of the variables involved (e.g. decay 

depth, mechanical strengths, root evolution/reinforcement, etc.).  

When using untreated wood elements, the decay process evolution can be 

introduced in the design stages through the service life concept (L, Eq. 5) used as a 

basis for the definition of design stages. The service life of the inert materials used 

must ensure a suitable development of the living material in order to make feasible the 

stabilising effect transfer process. Therefore, the effective role of the inert material used 

must provide a service life in terms of their stabilising effects of at least several years, 

because all elements interact to affect the overall safety factor of the system over time 

(Gray and Leiser, 1982). On the other hand, small and medium sized (100-250 mm 

diameter) round wood used in eco-engineering works (e.g. log crib walls or live slope 

grating; Zeh, 2007) is the main structural material with known properties (de Vries, 

1998; Ranta-Maunus et al., 1998; Boren, 1999) but has higher decay rate values 

because of the high proportion of sapwood (Zobel and Sprague, 1998). 

In the methodological approach proposed in this paper (Figure 4) the service life 

of the structural wooden elements is assumed to set the threshold after which there is 

no interaction/synergy between the living plants and the wooden elements as 

stabilising factors. From this threshold on, the vegetation will play the major role in 

keeping the system stable and the structural effects of the wooden elements should be 

neglected in stability checks in line with the main philosophy of the ecotechnological 

approach which should take advantage of the dynamic of the living systems (Gray and 

Sotir, 1996). 
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A set of different scenarios (stages) is defined in order to cover the eco-

engineering work evolution with time (Figure 4). For the short term (undrained, end of 

construction stage) check the plant effects will be not be included due to a lack of time 

for plant establishment after construction. For the drained (long term) checks, different 

scenarios will be taken into consideration. First, a scenario representing the stage 

throughout the first growth season of the eco-engineering work in which the plant 

effects are not included yet. After this stage, depending on whether wooden elements 

are present in the work or not, more design scenarios are defined. Without wooden 

elements being used, an additional stage that includes full plant effects will be 

necessary to depict the overall evolution of the eco-engineering work from a design 

point of view. Where wooden elements are being used, several additional stages will 

be defined depending on the wood service life (L) value calculated according to Eq. 5.  

 

Figure 4 Flowchart of the methodology; adapted from FHWA-NHI-00-43 (2001). The 

novel approach stages are shown as additional checks within the dashed line area. 

 

2.3. Methodology validation - case study 

2.3.1. Site characteristics 
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The study site lies on Catterline Bay, Northeastern Scotland, UK (x: 387100 

y:778350), located in a region with a mean annual temperature of 8.02ºC, a mean 

annual rainfall of 1232 mm, no (rainfall < 5 mm) dry months per year (UK Met Office) 

which constitutes a humid temperate climate (Cfc: subpolar oceanic climate: Köppen, 

1884). The precipitation is characterised by frequent, low intensity rainfall events, 

seldom heavy storms, and Kclimate = 1.56 (Leicester et al., 2003). 

The topography of the study site is dominated by sloped terrain (slope angle 25-

50 degrees) and cliffs. Published geological maps (BGS, 2013) show the superficial 

soils at the site area to comprise Raised Beach Deposits (RBD) of sands and gravels 

of the Quaternary period on the slopes and Mill of Forest Till Formation (Glacial Till) at 

the crest of the slope. A more detailed geological characterisation of the site can be 

found in Mickovski et al (2015). Shallow and well drained soils are found within the 

study area resting on top of sedimentary bedrock (i.e. conglomerate and sandstone). 

The soils comprise mainly silty sands with high organic matter content, soil porosity, 

and good drainage conditions (Mickovski et al., 2015). 

 

Figure 5 Study site (Google Earth image © 2016 Getmapping plc) 
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The vegetation cover is dominated by herbaceous weeds and grasses, riparian 

tress and agricultural crops of wheat and barley. Typical perennial pioneer herbs that 

are well distributed over the site are Erigeron acris L., Rumex obtusifolius L. and Silene 

dioica Clariv. The main tree species in the area are Fraxinus excelsior L., Acer 

pseudoplatanus L., Salix viminalis L. and Salix caprea L. Pinus sylvestris L. is present 

in small stands within the site. 

Different slope instability episodes have been reported in the past (e.g. 

Kincardineshire Observer 11/4/2013; Mickovski et al., 2015) mainly associated to 

heavy rainfall events (Fig. 6). A comprehensive analysis of the different slope failure 

types in the study site can be found in Mickovski et al (2015). Particularly, deep seated 

failures were detected at the toe of the coastal slope and, in order to mitigate against 

these instabilities, a log crib wall will be designed. 

 

Figure 6 Slope failure in the study site 

2.3.2. Material characteristics 

Given the type and permeability of the soil, i.e. silty sands, only drained 

conditions will be taken into account. The soil strength properties obtained through a 

standard laboratory shearbox test (Gonzalez-Ollauri, unpublished data) showed an 
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effective cohesion of 7 KPa, and effective angle of internal friction of 30º. The soil unit 

weight was 20.10 kN/m3 (González-Ollauri and Mickovski, 2014). 

It is assumed that the wood for the eco-engineering structure will come from the 

nearby Scots pine (Pinus sylvestris L.) stands following the sustainable design 

philosophy, with logs of approx. 200 mm diameter and characteristic bending strength 

of 20 N/mm2 (C20 class; Moore et al., 2008) made available for the work. Scots pine 

corewood is moderately resistant (durability class 3; AS 5604-2005) which yields Kwood 

= 1.30 (Eq.1; Leicester et al., 2003). Scots pine sapwood has a Kwood equal to 5.44 

(Eq.1; Leicester et al., 2003). 

For a Service class 3 and permanent loads the modification factor kmod = 0.5 

(EN 1995-1-1:2004/A1:2008 Eurocode 5). The material coefficient gm = 1.3 and, thus, 

the design bending strength will be equal to 7.69 N/mm2. The wood density 

interpolation shows a density of 525.25 Kg/m3 for the EMC=21% characteristic for 

Scots pine (EN 384:2010). 

The living material will consist of 1.80 m length Goat willow (Salix caprea L.) 

living branches (approx. diameter 10 mm) harvested from the site. To investigate the 

rooting characteristics of goat willow, root pullout tests were performed on site in 

accordance with existing methodology (Mickovski et al., 2005) on five different plants of 

different age, matching the service life analysis (3x3-year-old plants, 2x6-year-old 

plants). Root characterisation and distribution with depth was performed both in situ 

and in the laboratory according to Böhm (1979). 50 root samples with diameters 

ranging between 0.64 mm and 4.63 mm were tested in tension using a universal 

testing machine while measuring the force at constant displacement rate of 5 mm/min 

which mimicked the potential failure velocity. Only specimens that fractured in the 

middle third of the sample were used in further analysis since rupture near the grips 

might be influenced by higher stress concentration or structural damage. The results of 
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the root tensile tests were used to calculate the root tensile strength at the moment of 

maximum tensile force applied. 

2.3.3. Proposed solution description and remarks 

After analysing the topography on site it was decided to design a log crib wall 

with 1.8 m height, 1.8 m width and 5.0 m length (see Figure 6) – dimensions reflecting 

the size of the recent failure at the toe of the slope. The slope of the backfill was 

designed to be 30º and to match the surrounding terrain. Three goat willow living 

branches per meter will be used in every log row (see Figure 7; Schiechtl, 1988; Gray 

and Sotir, 1996). 

 

Figure 7 Log crib wall geometry a) cross-section, b) front-view  

The internal stability check was performed for the ‘in-ground condition’ - critical 

situation where the wooden elements (logs) are buried (Figure 8). For the internal 

stability check, the bending strength analyses were performed according to Eurocode 5 

(EN 1995-1-1:2004/A1:2008). The outer log row is considered the most critical from 

both durability and bending stress aspect (Stangl and Tesarz, 2003). The inner row of 

logs will be subjected to both a lower temperature and moisture variation throughout 

the year and at that depth the level of oxygen will be lower and therefore, the biotic 

activity will be lower (Stangl and Tesarz, 2003). Finally, from a bending analysis point 

of view, the outer row does not have soil in front counteracting the soil thrust unlike the 

inner row. The overall specific unit weight can be calculated by taking into account the 

volume occupied by the logs and the volume occupied by the soil (Preti and Cantini, 
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2002). By following this approach, the overall weight of the log crib wall was calculated 

as 61.96 kN/m. 

 

Figure 8 Log crib wall showing natural durability critical situation = in-ground condition 

(highlighted in red colour). 

 

A minimum maintenance of the living material (willow branches) utilised in the 

work is assumed to be carried out throughout the work design time scale (i.e. wooden 

elements service life).  

As it is shown in Figure 3, an added cohesion value calculated according to Eq. 

6 was used in the sliding stability check. For the overturning stability check case, root 

pull out force was utilised.  

The overall global stability was analysed using stability software (Slope/W 2012, 

GEO-SLOPE International Ltd, 2014) and spreadsheet (Slip4ex, Greenwood, 2006).  

 

3. Results 

3.1. Wood 

The adopted decay model (Leicester et al., 2003) using the input parameters (Section 

2.1) shows rcorewood=2.04 mm/year, rsapwood=8.52 mm/yr, tlag=0.72 yrs, and L (logs 

service life) of 6.22 years (Eq. 1, Eq. 2 and Eq. 5; Figure 9).  
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Based on the logs service life value (L=6.22 years), and for the purpose of this 

case study, two additional design stages were defined. One at t=3 years (stability 

check 2.1) and another at t=6 years (stability check 2.2).  

 

Figure 9 Scots pine idealised decay graph for the study area 

3.2. Plants. 

The five investigated plants showed that the plant resisting pull out force 

increased with plant age. The maximum pull out force ranged from 1.90 to 3.87 kN for 

3 and 6 year old plants respectively. Given that three plants per meter are considered 

in the wall design (see figure 7), the root pull out values to be used in the overturning 

stability check will be 5.7kN and 11.61kN for t-3 years and t-6 years, respectively.  

Since the roots are better developed within the outer half of the log crib wall 

(Stangl and Tesarz, 2003), the moment arm for the pull-out force is calculated as B/4 

(where B is the length of the base of the log crib wall; Figure 7). 

The exponential law obtained for the root tensile strength was Tr=28.7981D-

0.87155 [MPa] (R2=0.88).  

For the sliding check,  the added cohesion values calculated from Eq. 6 for the 

selected time scenarios are 4.6 kPa and 5.93 kPa for t=3 years and t=6 years, 

respectively. 

3.3. Stability 

The external stability checks are shown in the following table 
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Table 1 external stability check in the selected time stages (t=0, t=3 years and t=6 

years). Sliding and overturning safety factor formula adapted from Gray and Sotir (1996). 

 

T=0 (long term 

check 1; no plant 

effects) 

T=3 (long term 

check 2.1) 

T=6 (long term 

check 2.2) 

FoS sliding 1.46 1.78 1.87 

FoS overturning 2.15 2.25 2.36 

FoS global (slope 

failure check) 
1.47 1.49 1.53 

 

The internal stability checks are shown in the Table 2. 

Table 2 Internal stability check in the selected time stages (t= 0, t=3 years and t=6 years). 

Bending span length equal to 1.6 m. M=design bending moment. R=bending strength according 

to Eq. 3. 

Check 1, t=0 years (end of 

construction stage) 

Check 2.1, t=3 years Check 2.2, t=6 years 

M = 6.02 kNm 

No decay 

Diameter = 0.2 m 

R = 6.05 kNm 

Internal stability verified 

M = 6.02 kNm 

Decay depth = 5.67 mm 

Diameter = 0.18 m 

R = 5.07 kNm 

Internal stability NOT verified 

M = 6.02 kNm 

Decay depth = 11.21 mm 

Diameter = 0.17 m 

R = 4.23 kNm 

Internal stability NOT verified. 

Wooden elements are not 

developing a stabilising effect 

any longer.  

 

4. Discussion 

The proposed methodology is based on existing engineering standards and, 

therefore, engineer can become easily familiar with it. In the eco-engineering approach, 
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the use of materials which change their properties with time (plants and wood) is very 

common, and a design methodology making allowance for the deterioration and 

change of the work will be a very useful tool for eco-engineers. Indeed, the proposed 

methodology allows the interconnection between the eco-engineering work evolution 

and the engineering work design stage.  

From Table 2 it can be seen that the internal stability is not verified in the check 

2.1 (t=3 years). This would mean that the structure could collapse before the plants 

had had enough time to develop their reinforcing effect. At this stage, there are two 

options available: either to increase the log diameter which would involve bringing 

wood from a different site or to lowering the span of the bending element which would 

increase the material requirement but will be more sustainable. Choosing the latter 

case, and a value of 1.45 m span, would give the values shown in Table 3: 

Table 3 Internal stability check with a span of the bending elements equal to 1.45 m. 

Check 1, t = 0 years (end of 

construction stage) 

Check 2.1, t = 3 years Check 2.2, t = 6 years 

M = 4.95 kNm 

No decay 

Diameter = 0.2 mm 

R = 6.05 kNm 

Internal stability verified 

M = 4.95 kNm 

Decay depth = 4.79 mm 

New diameter value = 0.19 m 

R = 5.07 kNm 

Internal stability verified 

M = 4.95 kNm 

Decay depth = 11.21 mm 

New diameter value = 0.17 m 

R = 4.23 kNm 

Internal stability NOT verified 

 

With this new design, the log crib wall would resist enough time so the 

vegetation would be able to perform adequately its stabilising role. Therefore, the 

proposed methodology detected a scenario where the structure would be unstable 

without giving enough time to the vegetation to properly settle down and reinforce the 

slope. Traditional design would not have detected this situation and therefore an 

improvement within the design stage of eco-engineering works has been proven.  
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Our analysis shows that the external stability of the bioengineered slope 

increases with time because of the living plant effects. The sliding safety factor shows 

the largest increase as also noted in the literature (e.g. Preti and Cantini, 2002). The 

global safety factor (slope failure check) does not vary much because of the typical 

shallow root system developed by the goat willow and because of this, the best 

practice would include basic maintenance (e.g. pruning) to encourage root growth 

rather than above-ground growth which would further destabilise the slope (Preti and 

Cantini, 2002). Indeed, with minimum maintenance and treatment tasks plant growth 

will develop within the wall vertical preventing the generation of eccentric loads which 

may, in turn, trigger overturning instabilities of the overall structure which is one of the 

main adverse threats that may ruin the eco-engineering intervention approach (Preti 

and Cantini, 2002).  

The necessary input data for the proposed methodology is either readily 

available or easily measurable in the field (e.g. Böhm, 1979). The proposed 

methodology is compatible with theoretical root distribution models such as Laio et al. 

(2006) or Preti et al. (2010) and can accommodate prediction of the below ground 

biomass by analysing the above-ground biomass which makes the methodology even 

more accessible for preliminary design assessment. Similarly, the calculated values of 

root added cohesion compare well with the published values for willows tested in situ 

(Norris et al., 2008). However, in order to optimise the design, field data will be 

necessary and adequate investigations should be undertaken prior to the detailed 

design stage. 

The use of readily available materials (e.g. plants and wood) adjacent to the 

works site is another feature of the eco-engineering philosophy. The case study 

presented here showed a very cost effective design when compared to traditional slope 

stabilisation works. The complexities generated because of both the prioritisation of 

using available materials and the use of living plants are well managed in the proposed 
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methodology. Furthermore, the proposed methodology factors in the change in the 

material properties of the structural materials and the relative distribution of load 

transfer between the materials with time, reflecting the live, temporal dimension in the 

behaviour of the structure which is the novel aspect of the approach. Therefore, a good 

representation and simulation of eco-engineering works can be embraced within the 

proposed design method. 

As time progresses, both the complete decay of the wooden structure and its 

collapse will be reached. At this stage, as pointed out by Fernandes and Guiomar 

(2016), the slope stability will have to be ensured by the autochthonous developed 

vegetation. The initial rigidity of the eco-engineering work will allow for the triggering of 

new natural processes such as an improved resilience, an improved ecological 

functioning, plant communities’ succession processes, etc. Hence, the concept of work 

service life is not clearly applicable to the eco-engineering work case since the final 

stage of the eco-engineered slope would be represented by a natural ecological 

evolution of the slope which will include a natural restoration and succession of the 

indigenous plant communities. Indeed, reaching that natural succession process stage 

in one of the main aims of the eco-engineering work approach. 

Fenandes and Guiomar (2016) analysed the stability of eco-engineering works 

20 years after the end of construction stage (once the inert material effects were not 

present in the slope). Although their work is lacking real case study analyses, they 

showed for a variety of eco-engineering work types that the autochthonous vegetation 

stabilising effects were able to maintain and improve the general slope stability. More 

research is needed for an appropriate description of a complete eco-engineered slope 

evolution from a design point of view. 

The decay values obtained by means of Leicester et al. (2003) model match 

well with both existing experimental data (Princes Risborough Laboratory, 1976) and 

the wood mass loss data prediction of the climate data-exposure conditions in Europe 
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report (VTT working paper 181, 2011). Indeed, the mass loss predicted in the 

preceding document in the study area, for exterior above ground wood, is 20% in a 10 

year time span. With Leicester et al. (2003) model, the mass loss obtained for a 10 

year period of time is 30% which is higher than the 20 % predicted in the Climate 

conditions in Europe report (VTT working paper 181, 2011). This is due to the more 

critical service life conditions existing in an eco-engineering work (in-ground conditions) 

and the use of more precise climatic data. Therefore, Leicester et al. (2003) model is 

worst case and it can be used with more confidence as it will err on the side of safety. 

As with other parts of soil mechanics, the methods proposed have to be 

improved and calibrated with experience because of their semi-empirical nature. The 

need for adapting and changing our methods according to the new experiences and 

the analysis of mistakes and failures will refine our accuracy to assess the short and 

long term behaviour of the eco-engineering techniques and its stabilising effects. This 

could be accomplished by means of eco-engineering work monitoring tasks. Besides, 

the collection of experiences of eco-engineering structures (e.g. Stangl, 2007; Böll et 

al., 2009) in common and shared databases constitutes another remarkable tool at the 

design stage level. 

 

5. Conclusions 

The dynamic nature of the eco-engineering works must be incorporated at the 

design stage in order to realistically simulate and estimate the evolution of the work. 

Parameters such as wood decay/deterioration processes and the changing living 

material roles as stabilising factors must be integrated into design methodologies for 

these types of interventions. A methodology making allowance for the eco-engineering 

particularities is presented. A time staged design scheme is proposed in order to cover 

the work evolution within a defined design time scale (the wooden elements service 

life). The proposed methodology is applied to a real case study incorporating 



 25 

measurements and observations on soil as well as the plant root morphology at 

different time stages. Besides, the methodology follows the sustainability principles 

such as the use of available materials on or adjacent to the site. 

The stress transfer phenomena involved in the typical eco-engineering 

intervention is well shown in the proposed method. The methodology is able to detect 

critical design situations unlike traditional engineering design schemes. With the 

proposed method, the necessary time for the plant to grow and propagate new roots is 

ensured because, indeed, it is one of the objectives of the design philosophy. With the 

use of the proposed method both external and internal stability checks with their 

corresponding safety factor values increase with time and there are no conflicts 

between the two evolving processes involved in this kind of works which are: the 

wooden elements deterioration and the living plants evolution with time. An effective 

combination of these two phenomena is integrated into the design scheme.  

The accumulation of eco-engineering monitoring data will be a remarkable 

source of useful information both to better define the suitable time stages and to gather 

data regarding wood decay, root morphology and plant evolution. 
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