197 research outputs found

    Abundance and population structure of some economically important trees of Piedras Blancas National Park, Costa Rica

    Get PDF

    Defect detection in the textile industry using image-based machine learning methods: A brief review

    Get PDF
    Traditionally, computer vision solutions for detecting elements of interest (e.g., defects) are based on strict context-sensitive implementations to address contained problems with a set of well-defined conditions. On the other hand, several machine learning approaches have proven their generalization capacity, not only to improve classification continuously, but also to learn from new examples, based on a fundamental aspect: the separation of data from the algorithmic setup. The findings regarding backward-propagation and the progresses built upon graphical cards technologies boost the advances in machine learning towards a subfield known as deep learning that is becoming very popular among many industrial areas, due to its even greater robustness and flexibility to map and deal knowledge that is typically handled by humans, with, also, incredible scalability proneness. Fabric defect detection is one of the manual processes that has been progressively automatized resorting to the aforementioned approaches, as it is an essential process for quality control. The goal is manifold: reduce human error, fatigue, ergonomic issues and associated costs, while simultaneously improving the expeditiousness and preciseness of the involved tasks, with a direct impact on profit. Following such research line with a specific focus in the textile industry, this work aims to constitute a brief review of both defect types and Automated Optical Inspection (AOI) mostly based on machine learning techniques, which have been proving their effectiveness in identifying anomalies within the context of textile material analysis. The inclusion of Convolutional Neural Network (CNN) based on known architectures such as AlexNet or Visual Geometry Group (VGG16) on computerized defect analysis allowed to reach accuracies over 98%. A short discussion is also provided along with an analysis of the current state characterizing this field of intervention, as well as some future challenges.ERDF - European Regional Development Fund(undefined

    Using deep learning to detect the presence/absence of defects on leather: On the way to build an industry-driven approach

    Get PDF
    In textile/leather manufacturing environments, as in many other industrial contexts, quality inspection is an essential activity that is commonly performed by human operators. Error, fatigue, ergonomic issues, and related costs associated to this fashion of carrying out fabric validation are aspects concerning companies' strategists, whose mission includes to watch over the physical integrity of their employees, while aiming at enhanced quality control methods implementation towards profit maximization. Considering these challenges from a technical/scientific perspective, machine/deep learning approaches have been showing great skills in adapting a wide range of contexts and, in particular, industrial environments, complementing traditional computer vision methods with characteristics such as increased accuracy while dealing with image classification and segmentation problems, capacity for continuous learning from experts input and feedback, flexibility to easily scale training for new contextualization classes – unknown types of occurrences relevant to characterize a given problem –, among other advantages. The goal of crossing deep learning strategies with fabric inspection processes is pursued in this paper. After providing a brief but representative characterization of the targeted industrial context, in which, typically, fabric rolls of rawmaterial mats must be processed at a relatively low latency, an Automatic Optical Inspection (AOI) system architecture designed for such environments is revisited [1], for contextualization purposes. Afterwards, a set of deep learning-oriented training methods/processes is proposed in combination with neural networks built based on Xception architecture, towards the implementation of one of the components that integrate the aforementioned system, from which is expected the identification of presence/absence of defective textile/leather raw material at a low-latency. Several models powered by Xception were trained with different tunning parameters, resorting to datasets variations that were set up from raw images of leather, following different annotation strategies (meticulous and rough). The model that performed better reached 96% of accuracy.ERDF - European Regional Development Fund(undefined

    Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy

    Get PDF
    Autonomous vehicles are becoming central for the future of mobility, supported by advances in deep learning techniques. The performance of aself-driving system is highly dependent on the quality of the perception task. Developments in sensor technologies have led to an increased availability of 3D scanners such as LiDAR, allowing for a more accurate representation of the vehicle's surroundings, leading to safer systems. The rapid development and consequent rise of research studies around self-driving systems since early 2010, resulted in a tremendous increase in the number and novelty of object detection methods. After the first wave of works that essentially tried to expand known techniques from object detection in images, more recently there has been a notable development in newer and more adapted to LiDAR data works. This paper addresses the existing literature on object detection using LiDAR data within the scope of self-driving and brings a systematic way for analysing it. Unlike general object detection surveys, we will focus on point-cloud data, which presents specific challenges, notably its high-dimensional and sparse nature. This work introduces a common object detection pipeline and taxonomy to facilitate a thorough comparison between different techniques and, departing from it, this work will critically examine the representation of data (critical for complexity reduction), feature extraction and finally the object detection models. A comparison between performance results of the different models is included, alongside with some future research challenges.This work is supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n. 037902; Funding Reference: POCI-01-0247-FEDER-037902]

    Biosensors Used for Quantification of Nitrates in Plants

    Get PDF
    Nitrogen is essential for the plant because it is used for the production of chlorophyll, proteins, nucleic acids, amino acids, and other cellular compounds; nitrogen is available in two forms: ammonium and nitrate. Several tools have been used to quantify nitrates in plants such as the Kjeldahl method and Dumas combustion digestion; however, they are destructive and long time-consuming methods. To solve these disadvantages, methods such as selective electrodes, optical sensors, reflectometers, and images based sensors have been developed; nonetheless, all these techniques show interference when carrying out measurements. Currently, biosensors based on genetic constructions, based on the response of promoter gene fused to Gene Fluorescent Protein (GFP), are gaining popularity, because they improve the accuracy of measurements of nitrate by avoiding the interference of carriers ion, high salt conditions, and other factors. The present review shows the different methods to quantify the nitrogen in plants; later, a biosensors perspective is presented, mainly focused on biosensors based on organism genetically modified. The review presents a list of promoter and reporter genes that could be used to develop different kind of sensors, and a perspective of sensors to measure quantitatively the nitrogen is presented

    A ubiquitous service-oriented automatic optical inspection platform for textile industry

    Get PDF
    Within a highly competitive market context, quality standards are vital for the textile industry, in which related procedures to assess respective manufacture still mainly rely on human-based visual inspection. Thereby, factors such as ergonomics, analytical subjectivity, tiredness and error susceptibility affect the employee's performance and comfort in particular and impact the economic healthiness of each company operating in this industry, generally. In this paper, a defect detection-oriented platform for quality control in the textile industry is proposed to tackle these issues and respective impacts, combining computer vision, deep learning, geolocation and communication technologies. The system under development can integrate and improve the production ecosystem of a textile company through a properly adapted information technology setup and associated functionalities such as automatic defect detection and classification, real-time monitoring of operators, among others.This work was financed by the project “Smart Production Process” (No. POCI-01-0247-FEDER-045366), supported under the Incentive System for Research and Technological Development - Business R&DT (Individual Projects)

    FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Get PDF
    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore