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Abstract 

Within a highly competitive market context, quality standards are vital for the textile industry, in which related procedures to assess 
respective manufacture still mainly rely on human-based visual inspection. Thereby, factors such as ergonomics, analytical 
subjectivity, tiredness and error susceptibility affect the employee’s performance and comfort in particular and impact the economic 
healthiness of each company operating in this industry, generally. In this paper, a defect detection-oriented platform for quality 
control in the textile industry is proposed to tackle these issues and respective impacts, combining computer vision, deep learning, 
geolocation and communication technologies. The system under development can integrate and improve the production ecosystem 
of a textile company through a properly adapted information technology setup and associated functionalities such as automatic 
defect detection and classification, real-time monitoring of operators, among others. 
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1. Introduction 

In today’s competitive market, industries struggle to minimise defects in their final products. For this purpose, 
identifying the defect and finding a solution to prevent its recurrence is essential. The traditional methods for defects 
inspection rely on human eye-based analysis, which is time-consuming and prone to errors, and it negatively impacts 
employees' comfort and ergonomics. Thereby, in recent years, Automatic Optical Inspection (AOI) and its remarkable 
capabilities for detecting manufacturing defects in a wide range of industrial activities have been arousing the attention 
of the scientific community and industry-related professionals. 

A large spectrum of approaches supports AOI systems/platforms such as traditional computer vision methods, 
classic classification approaches such as Support Vector Machine (SVM), Artificial Neural Networks (ANN), etc. 
Recently, Deep Learning (DL) algorithms and methods have been modernizing computer vision in several tasks (e.g., 
classification, detection, segmentation) and are becoming increasingly popular in applications regarding quality 
assurance AOI. 

In the context that characterizes the textile industry, quality standards in activities that include – but are not 
restricted to – production is getting increasingly tight and meticulous in meeting the demanding requirements that 
have been laid down by the satellite business models (automotive industry, fashion/clothing commerce, etc.). 
Considering this issue allied to the available technological resources that unlock pathways to AOI, this paper proposes 
a defect detection-oriented platform for quality control in the textile industry, combining computer vision, deep 
learning, geolocation and communication technologies. Furthermore, the developed system can integrate and improve 
the IT ecosystem of a company through increased functionalities such as automatic defect detection and classification, 
real-time monitoring of operators, among others. 

This work is organised as follows: Section 2 includes background about service-oriented architectures, textile 
defect inspection algorithms and methods, and indoors location; the proposed textile inspection platform, which is 
divided into modules, is presented in Section 3. Then, section 4 shows some results, and finally, some conclusions are 
drawn in section 5. 

2. Background on service-oriented architectures, indoors location and textile defect inspection. 

Background on relevant technologies for service-oriented AOI focusing infrastructure perspective, vision 
algorithms for defect inspection and indoors tracking/mobility will be provided next.  

2.1. Service-Oriented Architectures 

Regarding the reference architecture model for industry 4.0, flexible communication and a distributed system 
architecture are key features of future production systems [1]. All instances that participate in the value creation must 
be connected and distribute information, which can be achieved through service-oriented architecture, defined as a 
loose coupling of independently managed information systems [2]. Different components implement atomic 
functionalities in this followed approach, and the composition of all these components forms a complete architecture 
ecosystem. 

Each microservice implements a specific end-to-end business domain or capability within a given context 
boundary, and each must be developed autonomously and deployed independently. Also, we followed the database 
per service pattern, ensuring that the services are loosely coupled, and changes to one service’s database do not impact 
any other services. This way, each service uses the type of database that best suits its needs, allowing us to implement 
SQL and NoSQL data models. 

Such an architecture results in a many-to-many communication network, where two typical models exist to enable 
communication between participants: the client/server and the peer-to-peer models. This way, it supports Event Driven 
SOA features so that different components can decide their interaction pattern and react to internal and external events. 
And components can behave either as services or event producers and consumers. 

The services must handle requests from the application’s clients and collaborate to handle those requests. They 
also need to synchronously communicate results in tight runtime coupling, requiring both the client and the service to 
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be available for the duration of the request. So, they need a Remote Procedure Invocation (RPI) technology for inter-
service communication. 

Industrial IoT requires flexible communication and a distributed, loosely coupled system architecture. Using the 
peer-to-peer communication model combined with message-oriented middleware (MOM) is a common approach for 
these new systems [2], which was also followed in this project. 

2.2. Defect Detection Methods 

A defect detection process based on computer vision techniques follows a workflow that typically includes a pre-
processing step and ends with a classification step. 

One pre-processing method uses a filter to reduce the noises, e.g., Bilateral, Wiener, Gaussian, Median, Mean, 
Laplacian. In [3, 4], the authors try to determine which filter better suits eliminating noises. After the noise removal, 
the most straightforward approach to getting useful information from the image is to use thresholding, a non-
contextual approach. 

This method is based on a threshold value to turn a grey-scale image into a binary image. Mehmet Sezginet al. [5] 
have compared 40 selected thresholding methods from various categories in non-destructive images based on the 
combined performance measures. 

Other approaches for defect inspection are based on the image classification process. S. Sadaghiyanfam [6], used 
Gray Level Co-occurance Matrix (GLCM) and wavelet transform for detect inspection and compared the results. They 
used three types of wavelet, including Haar, 2nd order Daubechies (db2), Sym4 with the different number of levels. 
The combination of GLCM with the other methods shows a significant result in defect detection. For instance, in [7], 
they convert the acquired image to a binary image using a Discrete Curvelet Transform (DCT) and then proceeded it 
by GLCM. P. Deshappriya et al. [8] used a Convolutional Neural network (CNN) to classify the fabric defect and 
locate it in the input image. Their results showed that using a light beam of similar colour intensity to the original 
material detected more accurate defect identification than white light. Whereas traditional convolutional network only 
has connections between each layer, Gao Huang et al. [9] proposed Dense Convolutional Network (DenseNet), which 
connects each layer to every other layer in a feedforward fashion. This network (DenseNet) was also used by [10], 
and they modified it regarding their requirements. 

2.3. Indoor Location and Operators Tracking 

GNSS – Global Navigation Satellite System is the most well-known positioning solution, working almost 
anywhere, providing the location in an absolute worldwide referential. However, this technology works only outdoor 
since it needs a direct line-of-sight between the emitters (satellites) and the GNSS receivers. 

Different technologies were explored in the last years to build indoor positioning systems. Among the most used 
are the ones based on Wi-Fi and BLE networks and UWB - Ultra-WideBand radio. In particular, the UWB makes it 
possible to implement indoor location with very high accuracy. Although high-cost specific hardware installed every 
few square meters are required, becoming too expensive and complex to deploy in a small or medium warehouse or 
factory. 

Wi-Fi networks are very popular, low cost and globally available. The radio signal of these networks can be used 
to build positioning systems in an indoor environment. Several techniques and algorithms have been developed that 
generally fall into three broad categories: proximity, triangulation and scene analysis [11]. Scene analysis techniques 
are based on the principle that radio measurements are location dependent. 

These techniques are composed of two phases. In the first phase, a radio map is constructed, which contains 
fingerprints collected from landmarks. In the second phase, called online, a user device collects a fingerprint which, 
by comparison/similarity with those existing on the radio map, allowing the position to be estimated. 

As an alternative, or in addition to Wi-Fi, indoor positioning solutions can be built based on BLE. BLE transmitters 
emit a radio signal with a short-range (compared, for example, to Wi-Fi), making it possible to create positioning 
solutions with potentially greater accuracy. Most of the time, BLE emitters have to be explicitly installed for 
implementing indoor positioning systems. However, BLE emitters are low cost; they can be installed easily because 
they are small in size, can easily be glued to objects, and when powered by batteries, they work for months. Based on 
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current state-of-the-art, Wi-Fi and BLE are the most convenient technologies to deploy scalable indoor positioning 
systems in ample spaces, demanding a reduced or almost null investment. 

3. The ubiquitous AOI system for textile defects detection. 

We used a Service-Oriented Architecture (SOA) to solve the context of the business domain. Microservices are a 
modern interpretation of the service-oriented architecture and were used to build a server application as a set of small 
services.  

Use Case models allow to represent the visualization of a system's process and can be considered as a method of 
gathering requirements, namely in the creation of a context for the gathering of requirements and subsequent 
derivation of logical architecture diagrams of the process. This way, user and system requirements were separated into 
functional and non-functional requirements. And the mapping of processes using the National Institute of Standards 
and Technology Cloud Computing Reference Architecture (NIST CCRA) [12] reference model allowed us to verify 
the suitability of cloud computing to the proposed solution. We used a context model to describe the scope of work, 
its adjacent systems, and the data that flows between them. The interfaces between adjacent systems and the context 
of the work to be carried out indicate why they are identified in the Client industrial context. 

This way, the delivery model in this project is a software as a service, in a cloud infrastructure operated as a private 
cloud (AOI Platform). In the private cloud, the infrastructure and computing resources are available from Client in-
house IT team, which operates, installs and manages the computing resources. And the SaaS application in the private 
cloud is implemented directly on the cloud resources (virtual machines) of the client internal IT team. 
The AOI platform provides devices, information and users management features of the product defect detection system 
on a factory floor. These features include algorithms and methods developed to improve the quality control process 
in the textile industry. The platform implemented in a microservices architecture is grouped into three modules (Fig. 
1): Communication, Inspection and Operator Tracking. Moreover, the platform can interact with external components 
such as an Enterprise Resource Planning system. 
 

 

Fig. 1. Global architecture of the proposed platform. 

3.1. Communication Module - CM 

 Features such as authentication, authorization, data storing, retrieval and transmission for other system modules, 
as well as protocol conversion for interoperability with internal/external systems are implemented in the 
communication module (Fig. 2). All components implement and publish a REST interface allowing the synchronously 
exchange of data with the system messaging bus. Moreover, clients of the microservices-based application access the 
individual services using API gateway pattern in its variation Backends for frontends [13], providing a single-entry 
point for all clients. The API gateway handles requests simply proxied/routed to the appropriate service. Also, exposes 
a different API for each client, providing the ones that are best suited to its requirements. As a result of this adoption, 
we got a simple request/reply system with no intermediate broker. In such a distributed system deployment, services 
run at fixed, well-known locations (hosts) and can easily call one another using HTTP/REST. 
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Fig. 2. Components of the Communication Module. 

Integration with legacy systems often lacks technological compatibility, which leads to the need for customising 
integrations to favour interoperability. It is the case of the integration between the IM and an external Enterprise 
Resource Planning (ERP) system in this project. To overcome this issue, a converter service was modelled to handle 
the conversion of AMQP protocol between the MOM of the IM, and the HTTP interface of the ERP system. Such a 
service enables bridging the asynchronous exchange of data with the MOM, decoupling the communication and 
allowing the parallelisation with several cyber-physical IM. And at the same time, bridging the synchronous exchange 
of data with ERP, in tight runtime coupling, which requires both the service and the ERP to be available for the 
duration of the request, and so, be limited by a time-out to handle MOM asynchronous availability. 

3.2. Inspection Module - IM 

This module includes five components: 1) Image Acquisition (IAC), 2) Defect Detection (DDC), 3) Defect 
Classification (DCC), 4) Message Broker (MBC), and 5) Visualisation Interface (VIC). Each component represents a 
specific step in the defect detection workflow. The interaction between these components is shown in Fig. 3. 
 

 

Fig. 3. Components of the Inspection Module and its interaction. 

The IAC design allows detecting defects with a minimum size of 1mm, considering a translation speed of 25m/s. 
In this sense, the selection of linear cameras, lenses and illumination allow representing 1mm with 8 pixels and covers 
a field of view of up to 1800mm. This setup enables the visualisation of small defects. Still, it increases the amount 
of data to be processed, e.g. a material with dimensions of 500mm x 1800mm occupies 192MB in RGB colour space. 
Fig. 4 shows a scheme with the main components of the IAC. LC1 and LC2 are two colour lineal cameras with 7,04 
µm as pixel size and 8192 pixels by line (Teledyne Dalsa Camara Linea Color 7.04um 8192x2-48kHz-Color-CMOS-
mCL). They are connected to a processing unit (Industrial PC Nuvo 8208GC i7-9700TE with Nvidia RTX 3080) 
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through 2 frame grabbers (Xtium-CL MX4). The illumination equipment includes a white led bar with an adjustable 
tilt angle. 
 

 

Fig. 4. Scheme of the equipment used in the IAC. 

The DDC can handle this amount of data and detect defects based on a set of pre-selected features and a pre-trained 
artificial neural network (ANN) algorithm. The features are specific to each type of material, and its computation is 
optimised to run over the CUDA architecture and ensure real-time processing. The DDC is supported by intensities 
and textures features. The training process of the artificial neural network is executed in advance (offline) from 
previously annotated databases created from the material of interest. 

After the defect detection step, the DDC pushes its output (i.e., defect position and current image) into a queue for 
classification purposes. Next, the DCC pops the image and performs defect type recognition tasks, resorting to deep 
learning algorithms. The push and pop processes occur in the MBC, responsible for managing the information flowing 
to and from the CM. The VIC (Fig. 5 a and b) visualise the acquired images and defects detected in real-time, allowing 
to supervise the inspection process.  

 

   

Fig. 5. Visual Interface Component. Left side: login interface, right side: real-time defect detection. 

Regarding the DL approach adopted to perform defect detection, SSD Inception V2 is considered, since it 
guarantees an acceptable trade-off between speed and accuracy [14]. Two main structures were combined to build this 
DL proposal: SSD [15] and Inception [16]. While the former method is designed for detecting objects based on 
multibox fitting processes, the latter consists in a supporting mid-layer that potentiates roboust feature extraction. 

3.3. Operator Tracking Module - OTM 

This module is formed by three different components, a mobile app, an indoor location web service, and an 
intermediary web service in charge of logging, post-processing and routing between the different parts of this and 



 Dibet Garcia Gonzalez  et al. / Procedia Computer Science 196 (2022) 217–225 223 Dibet Garcia Gonzalez et al. / Procedia Computer Science 00 (2019) 000–000  7 

other modules. Communication between components of this module is achieved through a MQTT broker (Mosquitto). 
All components run on docker containers. 

When the inspection module finds a possible but unknown defect, it sends a request to this module’s intermediary 
web service. This communication is made through a specific topic on the MQTT broker. When the intermediary web 
service receives the request, this is stored in a MongoDB database for logging and history keeping purposes. It then 
sends a request to the location web service to obtain a list of operators on the factory floor. The request is then routed 
to the mobile app running on all the returned operators’ devices. Afterwards, the operator’s response is sent back to 
the intermediary web service, which logs it and then routes it to a communications module API endpoint for further 
treatment. 

The mobile app, developed with React Native, allows an operator to login into the system (a valid account, created 
through the global system user management module, is required). It then starts listening, in the background, to a broker 
topic reserved for the logged-in username. 

Considering an industrial context, where operators can be called upon to intervene at any time and therefore may 
be on the move, a mobile app is the most suitable solution, as a smartphone can be more easily carried. Furthermore, 
with a focus on usability, a simple app design interface supports the system and facilitates inspection while minimising 
cognitive load by making available to the user only the elements of interaction necessary to reject or categorise a 
defect. 

When an unknown defect notification arrives, the app alerts the operator (haptic and sound notifications are used) 
and allows him, through two different screens, to analyse the unknown defect picture, dismiss it as not a defect or 
categorise it if it is, indeed, a defect. Most of the screen is used to display the image of the possible defect, to facilitate 
visual inspection and reducing the probability of errors occurring in the operator’s analysis. The strategic use of green 
coupled with the label “yes” and the tick symbol contrasts with the chosen red colour, associated with a “no” label 
and an X-like cross whenever a confirmation or rejection is needed. The categorisation is performed through a drop-
down menu for an easier and more efficient task, and feedback messages are delivered after each completed action. 
Moreover, the available screens show an informative note that reminds the operator that he/she must go to the machine 
for a new visual inspection and subsequent decision-making, in case of uncertainty. 

4. The inspection platform results 

Concerning the automatic optical inspection system, it is noteworthy to highlight that the functional requirements 
regarding the speed of movement of the material to be inspected were met. 

The system loading experiments confirmed that the images formed from the two linear cameras could be produced 
at 4fps, and with a size of 16384x1024 pixels (8pixels by mm). This ensures that the translation speed is higher than 
25m/s, set as the maximum translation speed value. The Defect Detection Component can process this information 
flow and ensure that all images are processed in real-time and without delays. 

In addition, the Message Broker component manages to queue all of the detected defects to be classified based on 
deep learning algorithms. This processing can be carried out in parallel to the processing or afterwards to issue reports 
about the production quality. Fig. 6 shows some colour defects as examples of the achieved results from deep learning-
based algorithms. The inference model used in the defect classification component was trained for 2 classes: colour 
defect and mechanical defect. 
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Fig. 6. Defect classification results based on deep learning algorithms. 

However, there may be defects that cannot be identified. In this sense, the geolocation module and a tool (mobile 
application) will allow a remote user to be notified of an unknown defect type. As described in subsection 3.3, this 
notification is presented on an Android smartphone (Fig. 7) and includes a picture of the defect and the identification 
of the machine that performed the detection. The remote user uses this information to classify the defect directly from 
his/her smartphone as a part of an active learning strategy. 
 

     

Fig. 7. Unknown defect classification viewed in Android app. 

Considering the technology taker perspective, the following main advanteges of using the proposed platform can 
be highlighted: i) the system configured to inspect one surface or both surfaces ii) detection of defects larger than 
1mm square can be performed, due to the high resolution of the integrated cameras, iii) detailed reports can be 
generated based on the position and classification of each defect, and iv) inter and intra human observer subjectivity 
is avoided. To ensure that both surfaces are inspected, the system must be duplicated by using two processing units 
with 4 frame grabbers and 4 linear cameras. Moreover, acquisition and illumination equipments mirrored in relation 
to the area of interest allow to cover the back part of the coating that also requires inspection, but is out of the human 
operator sight. 
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5. Conclusions 

In this work, a defect detection-oriented platform for quality control in the textile industry was presented. The 
proposed solution combines computer vision, deep learning, geolocation and communication technologies, enhancing 
the quality inspection in any enterprise IT ecosystem. As a novelty, the platform: (1) introduces a processing strategy 
to manage a vast amount of data in real-time and detect small defects, and (2) represents a solution supported in 
Industry 4.0 that enhance the quality control process. Overall, the current platform succeeds in the objective of 
detecting most of the defects, even the small ones, while the raw material is moving at high speed (25m/s) processing 
in real-time. 

In a near future, an active learning strategy will be implemented for the continuous enhancement of the current 
defect-aware deep learning models, under a cyclic process that relies in factory floor skilled labour confirmations 
upon defects inferred (by machine) bellow a predefined certainty threshold. 
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