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Abstract. In textile/leather manufacturing environments, as in many other industrial contexts, 

quality inspection is an essential activity that is commonly performed by human operators. 

Error, fatigue, ergonomic issues, and related costs associated to this fashion of carrying out 

fabric validation are aspects concerning companies' strategists, whose mission includes to 

watch over the physical integrity of their employees, while aiming at enhanced quality control 

methods implementation towards profit maximization. Considering these challenges from a 

technical/scientific perspective, machine/deep learning approaches have been showing great 

skills in adapting a wide range of contexts and, in particular, industrial environments, 

complementing traditional computer vision methods with characteristics such as increased 

accuracy while dealing with image classification and segmentation problems, capacity for 

continuous learning from experts input and feedback, flexibility to easily scale training for new 

contextualization classes – unknown types of occurrences relevant to characterize a given 

problem –, among other advantages. The goal of crossing deep learning strategies with fabric 

inspection processes is pursued in this paper. After providing a brief but representative 

characterization of the targeted industrial context, in which, typically, fabric rolls of raw-

material mats must be processed at a relatively low latency, an Automatic Optical Inspection 

(AOI) system architecture designed for such environments is revisited [1], for 

contextualization purposes. Afterwards, a set of deep learning-oriented training 

methods/processes is proposed in combination with neural networks built based on Xception 

architecture, towards the implementation of one of the components that integrate the 

aforementioned system, from which is expected the identification of presence/absence of 

defective textile/leather raw material at a low-latency. Several models powered by Xception 

were trained with different tunning parameters, resorting to datasets variations that were set up 

from raw images of leather, following different annotation strategies (meticulous and rough). 

The model that performed better reached 96% of accuracy. 

1. Introduction 

According with recent data made available by the Portuguese official statistics portal [2], in 2019, 

textile and leather industry was ranked in the top-10 of most economically influent activity fields in 
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Portugal, contributing with a gross value added higher than 4M €. Pushed by the pandemic advent of 

COVID-19, a crisis context has been impacting the textile and apparel industry not only in Portugal, 

but also across Europe, wherein the estimations made up to (this paper) date point out to an overall 

economic setback of 19%. Solutions towards a solid turnaround must encompass the adoption of state-

of-the-art technologies through R&D programmes [3], aiming the modernization of processes, as well 

as services. 

Fabric processes upon raw materials to produce clothes, coatings, among many other outputs with 

distinct market targets (e.g., household items retail, automotive industry) are prone to originate various 

types of defects or flaws in the production items – mostly, during knitting activities –, increasing costs 

through the interaction with textile/leather value chain (for example, due to complains and devolutions 

or items that were undervalued because of imperfections). This is, precisely, one of the issues that may 

be intervened by edge information technologies, more specifically, to perform inspection/quality 

control, which is a task still largely carried out by human operators, who are prone to errors, fatigue, 

and discomfort from an ergonomic perspective. Following this cogitation line, AOI approaches have 

been materialized in functional solutions capable of providing consistent and reliable quality control 

process, with results that indubitably outperform human procedures. Essentially, AOI consists in a set 

of acquisition devices (RGB sensors, illumination kits, clean chambers if required, etc.), remote or 

local processing hardware (e.g., workstation) and real-time algorithms for defect detection that, 

together, establish a powerful combination to deliver valuable quality assessment data to players 

holding decision responsibilities, in an automatic, effective and timely manner [4]. 

Fabric defects are anomalies that can be broadly classified as follows [5]: a) critical defects that render 

an item completely unusable and could cause harm to the user of the product; b) major defects are 

those that could adversely affect the function, performance, or appearance of a product; and, finally, c) 

minor defects that can be defined as insignificant issues. At a finest level, more specific 

categorizations can be found in the literature, as the one proposed by [6], in which 6 classes of defects 

were identified: a) vertical lines; b) horizontal lines; c) isolated defects; d) pattern defects; e) finishing 

defects; and f) printing defects. Missing and mixed yarns, broken end, needle line, oil spot, hole, press 

off, gouts are some of the concrete defects that can be found within the identified types. In terms of 

automatic inspection systems to address the detection of such defects, several works have been 

proposed. Concerned with the processing over large backgrounds, Wu et al. [7] combined RetinaNet 

and focal loss as a strategy to quickly extract features describing flaws in textile. They reached an 

accuracy of 96%. Hanbay et al. [8] compared the performances of Matlab and C++ with a method for 

defect detection that consisted in combining histogram oriented gradients (HOG) for feature extraction 

and artificial neural networks for classification, which reached an accuracy of 93%. It was also 

possible to conclude that C++ is more than 18 times faster than Matlab in processing the images, while 

using the same algorithmic approach. The detection of yarn-dyed defects was addressed in [9], in 

which a patch-based labelling step was carried out for training convolutional neural network (CNN) 

that, in turn, applies a sliding window strategy to make predictions upon textile images, with better 

results than traditional computer vision approaches. Resorting to image processing grounded in 

statistical inference over histogram characteristics for feature extraction, Kolmogorov–Smirnov’s 

sample test for feature selection, a thresholding method feature reduction and several classification 

approaches, Gan et al. [10] focused in the detection of leather flaws. Accuracies between 99.16% and 

77.13% were obtained. Another work that combines traditional and novel algorithms was proposed in 

[11], more specifically, digital image processing for visual data enhancement and neural networks for 

fabric defects detection. In most of the works found in literature, validations are carried out with 

datasets of fabric/leather defects, such as TILDA [12] and MVTec AD [13]. A wider set of works can 

be consulted in recent reviews [14], [15].  

In this work, which aims at the detection of defects in leather (without specific recognition, at the 

moment), a state-of-the-art CNN architecture – Xception [16] – was adopted to build 24 models for 

comparison purposes that learned from custom-made datasets variations (DSV), based on 

representative raw-images. A labelling tool that decomposes images into squared patches of 
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parameterizable size was used to set up the mentioned datasets. Two main labelling approaches were 

considered: meticulous and rough. Moreover, patch sizes of 71x71px (minimum size supported by 

Xception) and 128x128px (least common denominator above the minimum size supported by 

Xception complying with the 1024x1024 pixels size that transversally characterizes raw images) were 

selected for setting up the datasets. Per patch size mode and labelling approach, 3 datasets variation 

groups were generated, each one rotating imagery assets between train and validation subsets, but with 

a fixed test subset (unseen data), aiming to explore models learning potential. Regarding the training 

itself, two optimizers were integrated in each single session: time-based decay stochastic gradient 

descendent (SGD) and Nadam. 

Regarding this paper organization, besides this introductory section, three more can be found: Section 
2 characterizes one of the targeted Portuguese industrial environments for fabric processing as well as 
relevant issues for implementing real-time defect detection on raw material. Then, a multifaceted 
architecture proposal adaptable to different fabric industry requirements is revisited from previous 
proposals [1], to contextualize this work goal, which is to addresses one of its modules, more 
specifically, the one responsible for performing a binary detection of defects in textile/leather. 
Afterwards, the procedures carried out to set up datasets and to train the Xception-based CNN are 
disclosed. Section 3 is devoted to tests and respective accuracy results. Finally, main conclusions and 
intended lines for future work are presented in Section 4.  

 

2. Quality inspection in textile/leather industry: a brief contextualization 

In the context of textile/leather industry, raw material quality standards are getting increasingly tight 
and meticulous in meeting the requirements demanded by the satellite business models (automotive 
industry, fashion/clothing commerce, etc.). To be up to the challenge while responding time-
effectively, manufacturers have been adapting their inspection strategies differently and in compliance 
with the needs of their direct consumers. One of the common procedures that can be found inside 
factory floors relies in a roll trolley of raw material that is unwind to a table at a reasonably fast pace 
(speeds that can reach 25m/s), wherein a human operator carefully looks for relevant defects. Mainly, 
but not confined to, the goals are: (1) to avoid logistics additional costs from devolutions and (2) to 
keep business partners satisfied. However, humans have detection performances around 60-70% [17], 
proneness to ergonomic issues, among others. Considering these aspects allied to the available 
technological resources that unlock pathways to AOI, in [1], a defect detection-oriented platform for 
quality control in the textile industry was proposed, combining computer vision, deep learning, 
geolocation and communication technologies. Figure 1 depicts, specifically, the computer vision/deep 
learning system, which is composed of 3 main modules: acquisition, processing, and visualization. 
Push-broom scans of raw-material placed in roll trolleys are made through a linear sensor with a field-
of-view matching the size of the mat width.  Digital representations of mat portions imagery are then 
reconstructed into 2D wide images. Each resulting image is sliced into patch sets afterwards, which 
are sent to a non-blocking processing module. A two-queues system composes this module: one to 
deal with the bottlenecks of patches that are progressively released to a binary predictor, specialized in 
quickly assessing the presence/absence of defects; and another that articulates with a fine-grade 
classification capable of estimating the concrete types of anomalies in the patches filtered by the 
former predictor. Such fine-grade estimations end up in a defects classification database that, 
depending on a certainty threshold, store concrete classification labels or validation queries (e.g., 
"Which defect are you seeing?" or "Do you confirm a hole defect?") that are posed to experts 
(operators) working in the shop floor, in articulation with active learning strategies [18]. Finally, the 
visualization module implements a set of graphic tools and alarm triggers that interface with the user, 
aiming to provide highly accurate quality inspection decision support and human in the loop 
validations for the continuous reinforcement of the deep neural networks in use. 
Next section will focus on the technicalities underlying the construction of the deep binary detector 
proposed in this paper, which is a component in constant burden, since all the acquired images 
undergo through it, for a preliminary check-in for defects. 
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Figure 1. Adapted architecture of the computer vision/deep learning system of the AOI platform 

presented in [1]. It is composed by three modules – acquisition, processing, and visualization – and it 

is designed to support dynamic environments that commonly resort to roll trolleys from which 

textile/leather raw-material are unwind for relatively high cadence inspection. 

 
3. Proposal of a binary defect detector component for textile/leather AOI 

Considering the previously presented textile/leather AOI system specification, a process that seeks to 

build a robust (deep) binary defect detector is proposed in this section, pursuing high accuracies and 

time-effective operationalization, combined in a preliminary quality screening component 

(presence/absence of flaws). Such process can be found schematized in Figure 2. 

 

 

Figure 2. Pipeline for setting up a binary deep model for the preliminary quality screening in 

textile/leather raw material. 

 

First steps include to gather raw textile/leather images that also include defective regions (stains, rips, 

etc.) and join them into a single mosaic file. Then, an authoring labelling tool is used to annotate 

defects, in which a grid approach to divide the mosaics into selectable patches is used. The selected 

ones are considered as defects. When the annotation is concluded, a first split is performed to separate 

defects (label 1) from healthy (label 0) parts. To save unseen data for accuracy testing purposes, 50 

images of each class are kept in a subset aside, while the remaining images are considered as a 

training/validation subset, bulked together until this point. Afterwards, resorting to vertical and 



ISAIC-2021
Journal of Physics: Conference Series 2224 (2022) 012009

IOP Publishing
doi:10.1088/1742-6596/2224/1/012009

5

horizontal flipping, scaling transformation, bright and contrast variation, among other operations, the 

latter subset is augmented until class 1 reaches 4000 samples, whereas the examples of class 0 - 

naturally plentiful - are reduced until the same number. Such procedures aim not only to balance data, 

since healthy patches are present in much greater number, but, also, to increase the number of training 

and validation samples of defects that end up to support CNNs training. To consolidate the setting up 

of a given dataset, train and validation subsets are randomly split, using a distribution factor of 65% 

and 35%, respectively. Regarding the CNN perspective, an Xception architecture is used as the 

structural template to build the defect detector model. Next, several parameters are configured, as well 

as a grid search-like process for training optimization and performance enhancement. Some of the 

most important static characteristics and parameters are: 

• batch size of 32; 

• 1000 training epochs; 

• steps per epoch equivalent to the number of training images divided by batch size; 

• validation steps equivalent to the number of validation images divided by batch size; 

• checkpoint call-back to store only the best model; 

• early stopping call-back configured with 25 epochs of patience, validation accuracy as the 

monitoring variable, and a threshold that disregards validation accuracy improvements lesser 

than 0.001%; 

• a dropout regularizer weighing 0.25, preceding the dense layer. 

On the other hand, a grid search-like process seeks for the more proper initial learning rate (LR) 

among 1e-1, 1e-2, 1e-3, and 1e-4 values, by running, for each one, a 5-epoch trial, from which both top 

validation accuracies and losses are extracted and considered as key performance indicators. Then, LR 

are ranked based on those metrics – in a way that validation accuracies are of higher importance, while 

validation losses are only used, if necessary, as tiebreakers – to find the one that showed a better 

performance in the whole trial, for further usage in the effective training stage. Regarding the 

optimizers, both time-based SGD – with an LR decay schedule modelled by equation 1 – and Nadam 

[19] were considered, in isolated training sessions.  

    𝐿𝑅 = 𝐿𝑅 ×
1

1+𝑑𝑒𝑐𝑎𝑦.𝑒𝑝𝑜𝑐ℎ
   (1) 

Acknowledging datasets as of major importance in deep learning related challenges, annotation 

procedures and strategies will be detailed in the next subsection.  

3.1. Data gathering and annotation process 

Defective samples of leather available in MVTec AD repository [13] were downloaded and used to 

produce two mosaics of raw-images. To turn these mosaics into structured datasets, an authoring tool 

(Figure 3) was developed and used for binary labelling purposes.  

 

 

Figure 3. Authoring tool developed for labelling raw images. 
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It consists of a graphical user interface that allows to import an image, upon which a translucent grid 

(rule) of definable granularity is placed to orient tagging/releasing actions, as well as to drag, zoom in, 

zoom out canvas and export labeled grid patches into folders accordingly named. Resorting to this 

application, two labelling approaches were followed to start outlining the datasets for CNN training:  

• a meticulous marking of defects, in which the slightest visual indication of flaw was tagged as 

a surface fault; 

• a rough marking of defects, in which only patches with a substantial area of leather flaw, also 

determined by visual inference, were considered defective. 

While Figure 4 depicts the aforementioned labelling approaches, Figure 5 shows a few examples of 

healthy and defective leather samples. 

 

 a)  b) 

Figure 4. Labelling approach: a) meticulous; b) rough. 

 

      a) 

 

      b) 

Figure 5. Leather samples: a) represents the absence of defects (class 0); b) depicts examples of 

defective material (class 1).  

 

With the sample patches properly divided into classes of leather portions with and without defects, the 

next step is to reserve a testing subset of 50 images per class, foreseeing model's accuracy assessment 

with "unseen" data, in a post-training stage. Training/validation subset is then balanced – i.e., flaw 

samples are augmented while examples of healthy patches are decreased, as described earlier in this 

section – and subdivided into training (65%) and validation (35%) groups. At this point, procedures 

match steps 1 to 8 of the flow diagram delineated in Figure 2, meaning that datasets are consolidated 

and ready to undergo through the training stage that shape up the deep learning model for estimating 

the presence/absence of defects in leather. 

3.2. Deep Learning Approach: Xception 

Xception [16] combines point-wise convolutions followed by depth-wise separable convolutions and 

residual connections. By starting of convoluting the points and then the channels and, also, by 

excluding intermediate rectified linear units (ReLUs) of non-linearity, this deep learning architecture 

reached state-of-the-art performances in tests with ImageNet dataset [20]. 
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Acknowledging its learning robustness, Xception was considered to the challenge underlying this 

work, which is to train deep learning models capable of identifying the presence of defects in leather 

and, thus, starting developing sensibility and structures towards the development of a preliminary but 

essential screening component to be integrated in a major AOI system [1] for textile/leather quality 

assessment. Together with representative datasets variations and a couple of LR optimizers – time-

based SGD and Nadam – Xception’s potential for providing reliable models was explored through 

tests that will be addressed in a later section.     

3.3. Tools and implementation 

In terms of tools, Anaconda [21] was used as data science platform, which, in turn, integrates: Spyder 

[22] development environment, Python [23] programming language and Tensorflow [24] deep 

learning engine. Xception [16] template was pulled from Tensorflow library and adapted with a 

dropout layer for overfitting reduction. The solution programming was done taking into account the 

previously mentioned functionalities and features.  

Next section will address the tests performed to the proposed set of deep learning-oriented training 

methods/processes – turned into a demonstrable solution through Python and Tensorflow – and 

present the respective results.  

 

4. Tests and results 

A benchmark considering Xception architecture, time-based SGD and Nadam LR optimizers, both 

meticulous and rough labelling approaches – see subsection 3.1 –, and two distinct imagery size 

modes (71x71 and 128x128 pixels) configuring several datasets variation groups was performed, 

aiming to explore, mainly, the potential of modern deep learning strategies in the task of binary 

screening defective leather image patches.  

The setting up of DSV corresponds to the range of steps 5th to 8th, defined in the pipeline depicted in 

Figure 2. A couple of different size modes were considered in the production of such DSVs: 

• 71x71 pixels – the minimum accepted by the adopted architecture; 

• 128x128 pixels – least common divisor of original raw images dimension (1024x1024 pixels), 

immediately above the minimum acceptable mentioned in the previous point. 

More specifically, by inducing a slight change in the mentioned pipeline (Figure 2) consisting in the 

repetition of the 8th step, 3 groups of DSVs were generated for each one of the 4 possible 

combinations pairing size modes (among 71x71 and 128x128 pixels) with labelling approaches (out of 

rough and meticulous), making a total of 12 variations. Each DSV group results from random splitting 

operations to set up training and validation subsets, complying with the 65% and 35% factors defined 

in the previous section, respectively, while maintaining the same testing subset. With the inclusion of 

Nadam and time-based SGD LR schedulers for comparison purposes, 24 Xception-based models were 

trained in total. 

Regarding the results processing, due to DSVs balancing procedures done before CNNs training stage, 

the metric selected to assess each Xception-based model in terms of learning and prediction 

capabilities is standard accuracy, as shown in equation 2. 

 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (2) 

 

TP, TN, FP and FN correspond to true positive, true negative, false positive and false negative, 

respectively. 

The computer used to carry out these tests can be classified as a domestic grade market solution, and 

has the following relevant specifications: 

• Processor – 11th Gen Intel(R) Core (TM) i7-11800H @ 2.30 GHz 2.30 GHz; 

• Random Access Memory (RAM) – 32 GB @ 2933 MHz SODIMM; 

• Graphic Card – NVIDIA GeForce RTX 3080, 16.0 GB GDDR6 RAM (Laptop edition); 
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• Storage – 1 TB, 3500 MB/R, 3300 MB/W; 

• Operative System – Windows 10 Home 64 Bit. 

Results are presented in Table 1, from which can be inferred that models trained with Nadam are 

consistently more accurate than the ones trained with time-based SGD scheduler. It is also possible to 

conclude that models that relied their learning on roughly labelled datasets performed better, averagely 

(𝐷𝑆𝑉meticulous≃77%, 𝐷𝑆𝑉rough≃84%). Regarding the size modes, the smaller patches allowed to train 

models with a mean accuracy higher than the bigger ones (𝐷𝑆𝑉71x71≃90%, 𝐷𝑆𝑉128x128≃71%). The 

model with the best performance – reaching 96% of accuracy – follows the tendency of most of these 

observations, except for size mode, since it belongs to the group of images dimensioned to 128x128 

pixels. In Figure 6, more details about the results achieved with this model are provided.  

 

Table 1. Results of the tests done with Xception, considering 3 datasets variation groups, each one 
dimensioned to 71x71 and 128x128 pixels, and 2 optimizers – Nadam and Time-based SGD (TB-

SGD) –, across 2 styles of annotation (meticulous and rough).  

 DSV1 DSV2 DSV3 
 TB-SGD Nadam TB-SGD Nadam TB-SGD Nadam 

Meticulous (71x71) 82% 86% 85% 93% 91% 94% 
Meticulous (128x128) 54% 77% 53% 77% 55% 74% 

Rough (71x71) 91% 94% 90% 91% 87% 92% 
Rough (128x128) 59% 93% 59% 94% 59% 96% 

 

a) 

b) 
 

c) 

Figure 6. Results achieved with the model that best performed in distinguishing healthy and defective 

leather portions: a) and b) show the loss and accuracy plots, respectively, with an interesting 

convergence tendency; c) presents the confusion matrix. 

 

Comparisons with the other works found in the scientific literature (e.g. [6], [7], [8], [9], [10], and 

[11]) cannot be directly made, inasmuch as this module focuses in the detection of defects, rather than 
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identification. Even though, one can infer that very promising results were obtained overall, in what 

concerns to quality inspection accuracy. 

In terms of prediction time, the computer in which these tests were performed requires, roughly, 3 

seconds to estimate the presence/absence of defects in 100 leather patches, which seems significative 

for a model that must operate near of real-time rates. 

 

5. Conclusions and future work 

Quality inspection is an essential activity for textile/leather industry that is still, however, commonly 

performed by human operators, with a negative impact in employed collaborators’ well-being and 

companies’ financial healthiness. To tackle such conjuncture, AOI approaches have been materialized 

in functional solutions capable of providing consistent and reliable quality control process. 

In this paper, the preliminary binary defect detector component that composes the system proposed in 

previous work [1] was addressed, with studies and experiments that aim to guide further 

developments. Pursuing this goal, several combinations involving different raw data labelling styles, 

dataset variation groups, size modes reflected in images dimensions, as well as training sessions 

varying optimizers were considered, to build and compare 24 Xception-based models. Accuracies 

ranging from 53% to 96% were achieved, with emphasis on models created based on datasets roughly 

labelled, 71x71 pixels size modes and Nadam optimizer, which contributed for higher accuracies, 

overall. On the other hand, prediction times do not seem to be the most satisfactory to comply with 

close to real-time processing requirements. 

Future activities must encompass the analysis of the variables addressed in this work and, also, others 

of significant pertinence – including batch size redefinitions, wider sets of optimizers and fine tuning 

of the respective parameters, alternative labelling strategies and data augmentation methods, etc. –, 

working with CNN architectures capable of outputting quicker estimations. Moreover, other datasets 

of public access complemented with acquired ones in shop floors context must be included to 

consolidate deep learning-based models’ reliability and transversality. 

 

Funding 

This work was financed by the project “IntVIS4Insp – Intelligent and Flexible Computer Vision 

System for Automatic Inspection” (N° POCI-01-0247-FEDER-042778), supported by COMPETE 

2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional 

Development Fund (ERDF). 

 

References 

[1] Dibet Garcia Gonzalez et al., ‘A Ubiquitous Service-Oriented Automatic Optical Inspection 

Platform For Textile Industry’, presented at the CENTERIS - International Conference on 

ENTERprise Information Systems 2021, Braga, Minho, Portugal, Oct. 2021. 

[2] ‘Valor acrescentado bruto: total e por ramo de actividade (base=2016)’. 

https://www.pordata.pt/Portugal/Valor+acrescentado+bruto+total+e+por+ramo+de+actividade+(b

ase+2016)-2293 (accessed Oct. 26, 2021). 

[3] ‘Bruised but not beaten Europe s textile industry is a perfect candidate for a greener and digital 

recovery’. https://www.eulerhermes.com/en_global/news-insights/economic-insights/Bruised-but-

not-beaten-Europe-s-textile-industry-is-a-perfect-candidate-for-a-greener-and-digital-

recovery.html (accessed Oct. 26, 2021). 

[4] ‘An Effective Automatic Fabric Defect Detection System using Digital Image Processing’, J. 

Environ. Nanotechnol., vol. 6, no. 1, pp. 79–85, Mar. 2017, doi: 10.13074/jent.2017.03.171241. 

[5] S. Signal, ‘Detection and Location of Defects in Handloom Cottage Silk Fabrics using MRMRFM 

& MRCSF’, undefined, 2011, Accessed: Oct. 28, 2021. [Online]. Available: 

https://www.semanticscholar.org/paper/Detection-and-Location-of-Defects-in-Handloom-Silk-

Signal/642d55aff7307e3ed7febd22ea8b9504ff041af8 



ISAIC-2021
Journal of Physics: Conference Series 2224 (2022) 012009

IOP Publishing
doi:10.1088/1742-6596/2224/1/012009

10

[6] ‘Standard Fabric Defect Glossary - Cotton Incorporated - Quality Products’, Cotton Incorporated. 

https://www.cottoninc.com/quality-products/textile-resources/fabric-defect-glossary/ (accessed 

Oct. 28, 2021). 

[7] W. Wu, L. Wu, J. Li, S. Wang, G. Zheng, and X. He, ‘RetinaNet-Based Visual Inspection of 

Flexible Materials’, in 2019 IEEE International Conference on Smart Internet of Things 

(SmartIoT), Aug. 2019, pp. 432–435. doi: 10.1109/SmartIoT.2019.00077. 

[8] K. Hanbay, S. Golgiyaz, and M. F. Talu, ‘Real time fabric defect detection system on Matlab and 

C++/Opencv platforms’, in 2017 International Artificial Intelligence and Data Processing 

Symposium (IDAP), Sep. 2017, pp. 1–8. doi: 10.1109/IDAP.2017.8090180. 

[9] J.-F. Jing and H. Ma, ‘Yarn-dyed fabric defect detection based on convolutional neural network’, 

in Tenth International Conference on Graphics and Image Processing (ICGIP 2018), May 2019, 

vol. 11069, pp. 1128–1133. doi: 10.1117/12.2524202. 

[10] Y. S. Gan, S.-S. Chee, Y.-C. Huang, S.-T. Liong, and W.-C. Yau, ‘Automated leather defect 

inspection using statistical approach on image intensity’, J Ambient Intell Human Comput, vol. 12, 

no. 10, pp. 9269–9285, Oct. 2021, doi: 10.1007/s12652-020-02631-6. 

[11] V. Voronin, R. Sizyakin, M. Zhdanova, E. Semenishchev, D. Bezuglov, and A. Zelemskii, 

‘Automated visual inspection of fabric image using deep learning approach for defect detection’, 

in Automated Visual Inspection and Machine Vision IV, Jun. 2021, vol. 11787, pp. 174–180. doi: 

10.1117/12.2592872. 

[12] H. Schulz-Mirbach, ‘Ein Referenzdatensatz zur Evaluierung von Sichtprüfungsverfahren für 

Textiloberflächen’, Tech. Report 4/96, Tech. Inf. I, TU Hamburg-Harburg, 1996. 

[13] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, ‘MVTec AD — A Comprehensive Real-

World Dataset for Unsupervised Anomaly Detection’, in 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, Jun. 2019, pp. 9584–

9592. doi: 10.1109/CVPR.2019.00982. 

[14] T. Czimmermann et al., ‘Visual-Based Defect Detection and Classification Approaches for 

Industrial Applications—A SURVEY’, Sensors, vol. 20, no. 5, Art. no. 5, Jan. 2020, doi: 

10.3390/s20051459. 

[15] C. Li, J. Li, Y. Li, L. He, X. Fu, and J. Chen, ‘Fabric Defect Detection in Textile Manufacturing: 

A Survey of the State of the Art’, Security and Communication Networks, vol. 2021, p. e9948808, 

May 2021, doi: 10.1155/2021/9948808. 

[16] F. Chollet, ‘Xception: Deep Learning with Depthwise Separable Convolutions’, 

arXiv:1610.02357 [cs], Apr. 2017, Accessed: May 26, 2021. [Online]. Available: 

http://arxiv.org/abs/1610.02357 

[17] K. L. Mak and P. Peng, ‘An automated inspection system for textile fabrics based on Gabor 

filters’, Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 359–369, Jun. 2008, 

doi: 10.1016/j.rcim.2007.02.019. 

[18] Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar, ‘Deep Active Learning for 

Named Entity Recognition’, arXiv:1707.05928 [cs], Feb. 2018, Accessed: Nov. 08, 2021. 

[Online]. Available: http://arxiv.org/abs/1707.05928 

[19] T. Dozat, ‘INCORPORATING NESTEROV MOMENTUM INTO ADAM’, p. 4, 2016. 

[20] O. Russakovsky et al., ‘ImageNet Large Scale Visual Recognition Challenge’, arXiv:1409.0575 

[cs], Sep. 2014, Accessed: May 03, 2019. [Online]. Available: http://arxiv.org/abs/1409.0575 

[21] ‘Anaconda | The World’s Most Popular Data Science Platform’, Anaconda. 

https://xddebuganaconda.xdlab.co/ (accessed Nov. 16, 2021). 

[22] ‘Home — Spyder IDE’. https://www.spyder-ide.org/ (accessed Nov. 16, 2021). 

[23] ‘Welcome to Python.org’, Python.org. https://www.python.org/ (accessed Nov. 16, 2021). 

[24] ‘TensorFlow’. https://www.tensorflow.org/ (accessed Nov. 16, 2021). 

 


