134 research outputs found
Decentralized High Level Controller for Formation Flight Control of UAVs
International audienceThe main contribution of this paper is the design of a decentralized and tuning-less high level controller able to maintain without tracking errors a Leader-Follower (LF) configuration in case of lack or degraded communications (latencies, lossâŠ) between the leader and followers UAVs. The high level controller only requires simple tunings and rests on a predictive filtering algorithm and a first order dynamic model to recover an estimation of the leader UAV velocities and avoid the tracking errors
SAGETTARIUS: a program to reduce the number of tags mapped to multiple transcripts and to plan SAGE sequencing stages
SAGE (Serial Analysis of Gene Expression) experiments generate short nucleotide sequences called âtagsâ which are assumed to map unambiguously to their original transcripts (1 tag to 1 transcript mapping). Nevertheless, many tags are generated that do not map to any transcript or map to multiple transcripts. Current bioinformatics resources, such as SAGEmap and TAGmapper, have focused on reducing the number of unmapped tags. Here, we describe SAGETTARIUS, a new high-throughput program that performs successive precise Nla3 and Sau3A tag to transcript mapping, based on specifically designed Virtual Tag (VT) libraries. First, SAGETTARIUS decreases the number of tags mapped to multiple transcripts. Among the various mapping resources compared, SAGETTARIUS performed the best in this respect by decreasing up to 11% the number of multiply mapped tags. Second, SAGETTARIUS allows the establishment of a guideline for SAGE experiment sequencing efforts through efficient mapping of the CRT (Cytoplasmic Ribosomal protein Transcripts)-specific tags. Using all publicly available human and mouse Nla3 SAGE experiments, we show that sequencing 100 000 tags is sufficient to map almost all CRT-specific tags and that four sequencing stages can be identified when carrying out a human or mouse SAGE project. SAGETTARIUS is web interfaced and freely accessible to academic users
Graphene in silicon photovoltaic cells
Graphene is an allotrope of carbon. Its structure is one-atom-thick planar sheets of carbon atoms that are
densely packed in a honeycomb crystal lattice [1]. The richness of optical and electronic properties of
graphene attracts enormous interest. Its true potential seems to be in photonics and optoelectronics, where
the combination of its unique optical and electronic properties can be fully exploited. The optical
absorption of graphene layers is proportional to the number of layers, each absorbing A=1-T=Ïα=2.3%
over the visible spectrum [2].The rise of graphene in photonics and optoelectronics is shown by several
recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers.
Current photovoltaic (PV) technology is dominated by Si cells, with an energy conversion coefficient
up to 25% [3]. Such an inorganic PV consists in a current transparent conductor (TC) replacing one of the
electrodes of a PIN photodiode. The standard material used so far for these electrodes is indium-tinoxide,
or ITO. But indium is expensive and relatively rare, so the search has been on for a suitable
replacement. A possible substitute made from inexpensive and ubiquitous carbon is graphene. Being only
constituted of carbon, it will become cheap and easily recyclable. But at the moment, the major difficulty
consists in its fabrication and/or transfer.
Our project consists in synthetizing graphene by CVD (Chemical Vapor Deposition) on Cu and in
transferring the obtained layer on silicon PV cells, and then in testing their energy conversion efficiency
Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation
One of the most fascinating examples of parasite-induced host manipulation is that of hairworms, first, because they induce a spectacular "suicideâ water-seeking behavior in their terrestrial insect hosts and, second, because the emergence of the parasite is not lethal per se for the host that can live several months following parasite release. The mechanisms hairworms use to increase the encounter rate between their host and water remain, however, poorly understood. Considering the selective landscape in which nematomorph manipulation has evolved as well as previously obtained proteomics data, we predicted that crickets harboring mature hairworms would display a modified behavioral response to light. Since following parasite emergence in water, the cricket host and parasitic worm do not interact physiologically anymore, we also predicted that the host would recover from the modified behaviors. We examined the effect of hairworm infection on different behavioral responses of the host when stimulated by light to record responses from uninfected, infected, and ex-infected crickets. We showed that hairworm infection fundamentally modifies cricket behavior by inducing directed responses to light, a condition from which they mostly recover once the parasite is released. This study supports the idea that host manipulation by parasites is subtle, complex, and multidimensiona
Practical Works on Nanotechnology: Middle School to Undergraduate Students
Since its emergence a few decades ago, nanotechnology has been shown to be a perfect example of a crossroad between different fundamentals sciences. In the last 10 years, the continuous progress of classical top-down lithography and the use of alternative bottom-up elaboration methods has allowed new and smaller components to be created. Their combination has led to very complex and innovative architectures. At the same time, flexible, low-cost, and low-ecological-footprint devices have emerged. Thus, the diversity and multidisciplinary features present challenges in addressing these issues in educational programs
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Altimetry for the future: building on 25 years of progress
In 2018 we celebrated 25âŻyears of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology.
The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the âGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
VerriÚres-en-Anjou (Maine-et-Loire). Le Petit Mossé 1 [Chronique de fouille]
International audienc
Approche efficace de développement de logiciel embarqué pour des systÚmes multiprocesseurs sur puce
Cette dissertation montre que des applications embarquées complexes peuvent tirer partie efficacement de plateformes MP-SoC hétérogÚnes tout en respectant les critÚres de flexibilité, mise à l'échelle, portabilité et time-to-market. Elle fait la description d'un flot de conception de logiciel embarqué amélioré combinant un générateur de code, GECKO, et un environnement logiciel innovant, APES, afin d'obtenir un haut niveau d'efficacité. La contribution ainsi présentée est double : 1) un flot de conception de logiciel embarqué amélioré avec un ensemble d'outils permettant la construction automatique d'objets binaires minimaux pour une application donnée ciblant une plateforme MP-SoC donnée, et 2) un ensemble de composants logiciels modulaire et portable incluant des mécanismes de systÚmes d'exploitations traditionnels ainsi que le support de multiples processeurs.This dissertation shows that complex, embedded software applications can effectively operate heterogeneous MP-SoC with respect to flexibility, scalability, portability, and Time-To- Market. It presents an improved embedded software design flow that combines an application code generator, GECKO, and a novel software framework, APES, to achieve a high level of efficiency. Our contribution is twofold: 1) an improved embedded software design flow with several tools that enable the automatic construction of minimal and optimized binaries for a given application targeting a given MP-SoC, and 2) a modular and portable set of software components that includes traditional operating system mechanisms as well as the support for multiple processors.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF
- âŠ