107 research outputs found

    Assessing Hazard Vulnerability, Habitat Conservation, and Restoration for the Enhancement ofmainland China’s Coastal Resilience

    Get PDF
    Worldwide, humans are facing high risks from natural hazards, especially in coastal regions with high population densities. Rising sea levels due to global warming are making coastal communities’ infrastructure vulnerable to natural disasters. The present study aims to provide a coupling approach of vulnerability and resilience through restoration and conservation of lost or degraded coastal natural habitats to reclamation under different climate change scenarios. The integrated valuation of ecosystems and tradeoffs model is used to assess the current and future vulnerability of coastal communities. The model employed is based on seven different biogeophysical variables to calculate a natural hazard index and to highlight the criticality of the restoration of natural habitats. The results show that roughly 25% of the coastline and more than 5 million residents are in highly vulnerable coastal areas of mainland China, and these numbers are expected to double by 2100. Our study suggests that restoration and conservation in recently reclaimed areas have the potential to reduce this vulnerability by 45%. Hence, natural habitats have proved to be a great defense against coastal hazards and should be prioritized in coastal planning and development. The findings confirm that natural habitats are critical for coastal resilience and can act as a recovery force of coastal functionality loss. Therefore, we recommend that the Chinese government prioritizes restoration (where possible) and conservation of the remaining habitats for the sake of coastal resilience to prevent natural hazards from escalating into disasters. Plain Language Summary: Coastal populations are especially at risk from sea-level rise (SLR), induced storm surges, and other natural hazards. Therefore, it becomes essential to analyze the current and future vulnerabilities of coastal regions to natural hazards. Furthermore, it is desirable for the policy and the decision making to propose the suitable approaches for the resilience enhancement. This paper analyzes the current and future vulnerability of mainland China’s coast to the SLR-induced natural hazards using a natural hazard index incorporating a coupled approach to vulnerability and resilience. The results show that the restoration of lost mangroves (where possible) and conservation of remaining coastal natural habitats can reduce the future coastal vulnerability by 45%. This study confirms that natural habitats are significant for coastal resilience and the governments should prioritize them for the sake of coastal resilience to mitigate the impacts of natural hazards. Includes supplemental material

    The global flood protection savings provided by coral reefs

    Get PDF
    Coral reefs can provide significant coastal protection benefits to people and property. Here we show that the annual expected damages from flooding would double, and costs from frequent storms would triple without reefs. For 100-year storm events, flood damages would increase by 91% to US272billionwithoutreefs.ThecountrieswiththemosttogainfromreefmanagementareIndonesia,Philippines,Malaysia,Mexico,andCuba;annualexpectedfloodsavingsexceedUS 272 billion without reefs. The countries with the most to gain from reef management are Indonesia, Philippines, Malaysia, Mexico, and Cuba; annual expected flood savings exceed 400?M for each of these nations. Sea-level rise will increase flood risk, but substantial impacts could happen from reef loss alone without better near-term management. We provide a global, process-based valuation of an ecosystem service across an entire marine biome at (sub)national levels. These spatially explicit benefits inform critical risk and environmental management decisions, and the expected benefits can be directly considered by governments (e.g., national accounts, recovery plans) and businesses (e.g., insurance).We gratefully acknowledge support from the World Bank Wealth Accounting and Valuation of Ecosystems (WAVES) Program, the Lyda Hill Foundation, Science for Nature and People Partnership, Lloyd’s Tercentenary Research Foundation, a Pew Fellowship in Marine Conservation to MWB, the German International Climate Initiative (IKI) of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the Spanish Ministry of Economy and Innovation (BIA2014-59718- R)

    Numerical study of periodic long wave run-up on a rigid vegetation sloping beach

    Get PDF
    © 2017 Elsevier B.V. Coastal vegetation can reduce long wave run-up on beaches and inland propagation distances and thus mitigate these hazards. This paper investigates periodic long wave run-up on coastal rigid vegetation sloping beaches via a numerical study. Rigid vegetation is approximated as rigid sticks, and the numerical model is based on an implementation of Morison's formulation [21] for rigid structures induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical model is validated by comparison with experimental results. The model is then applied to simulate various hypothetical cases of long periodic wave run-up on a sloping vegetated beach with different plant diameters and densities, and incident long waves with different periods. The sensitivity of long wave run-up to plant diameter, stem density and wave period is investigated by comparison of the numerical results for different vegetation characteristics and different wave periods. The numerical results show that rigid vegetation can effectively reduce long wave run-up and that wave run-up is decreased with increase of plant diameter and stem density. Moreover, the attenuation of long periodic wave run-up due to vegetation is sensitive to the variation of the incident wave period, and the attenuation of wave run-up is not increased or decreased monotonically with incident wave period

    Desenvolvimento de um roteiro conceitual para a gestão da biodiversidade e dos serviços ecossistêmicos no Caribe mexicano

    Get PDF
    Coral reefs and mangroves support rich biodiversity and provide ecosystem services that range from food, recreational benefits and coastal protection services, among others. They are one of the most threatened ecosystems by urbanization processes. In this context, we developed a conceptual framework for the management of biodiversity and ecosystem services for these coastal environments. We based our workflow on two sections: “Information base” and “Governance” and use the Puerto Morelos Coastal region as a case study for coastal protection. Puerto Morelos is between two of the most touristic destinations of Mexico (Playa del Carmen and Cancun) that has experienced an increase of population in the past four decades resulting in an intensification of multiple threats to its ecosystems. We characterized the two ecosystems with a “Management Units” strategy. An expert-based ecosystem services matrix was also described in order to connect mangroves and coral reef ecosystems with the multiple beneficiaries. Then an ecosystem model (conceptual model and Global Biodiversity model) was developed. The conceptual model was useful in understanding the interplay processes between systems regarding the ecosystem service of “Coastal Protection”. The Global Biodiversity model evidenced the human-induced shifts in the biodiversity for mangrove and coral reefs ecosystems. Also, a projection for 2035 of “best” and “worst” scenarios was applied using GLOBIO3. A DPSIR conceptual framework was used to analyze environmental problems regarding ecosystem services maintenance. Finally, we evaluated a set of policies associated with these ecosystems that favor coastal protection integrity. This framework facilitates the identification of the most relevant processes and controls about the provision of coastal protection service. It can also be useful to better target management actions and as a tool to identify future management needs to tackle the challenges preventing more effective conservation of coastal environments.Recifes de coral e manguezais possuem rica biodiversidade e fornecem serviços ecossistêmicos, tais como, alimento, recreação, proteção costeira, entre outros. Esses ecossistemas encontram-se entre os mais ameaçados pelos processos de urbanização. Nesse contexto, desenvolvemos um roteiro conceitual para a gestão da biodiversidade e dos serviços ecossistêmicos desses ambientes costeiros. Organizamos nossa sequência de passos de trabalho em duas seções: “Base de informações” e “Governança” e usamos a região costeira da cidade de Puerto Morelos (México) como um estudo de caso para analisar o serviço de proteção de costa. Puerto Morelos encontra-se entre dois dos destinos mais turísticos do México (Playa del Carmen e Cancún), e portanto sua população vem aumentando nas últimas quatro décadas, resultando na intensificação de múltiplas ameaças para os ecossistemas. Primeiramente, caracterizamos os dois ecossistemas identificando-os como “Unidades de Gestão”, detalhando seus principais componentes e processos. Através de uma “Matriz de serviços ecossistêmicos”, construída com base na opinião de especialistas, foram sistematizados os principais serviços ecossistêmicos prestados pelos manguezais e recifes de corais aos múltiplos beneficiários. Em seguida, foi desenvolvida uma modelagem do sistema (e ecossistemas) através de sua representação na forma de um modelo conceitual e um modelo numérico de Biodiversidade Global. O modelo conceitual facilitou a compreensão dos processos de interação entre sistemas em relação ao serviço “Proteção Costeira”. O modelo numérico evidenciou as mudanças induzidas pelo homem na biodiversidade dos ecossistemas de manguezal e recifes de coral. Além disso, uma projeção dos cenários “melhor” e “pior” foi desenvolvida para 2035 usando GLOBIO3. A Estrutura conceitual DPSIR foi aplicada para analisar problemas ambientais relacionados à manutenção dos serviços ecossistêmicos. Finalmente, avaliamos um conjunto de políticas públicas associadas a esses ecossistemas e que favorecem a integridade da proteção costeira. Portanto, o roteiro facilitou a identificação dos principais processos e controles para a provisão de um serviço ecossistêmico. Além disso, pode ser útil para direcionar melhor as ações de gerenciamento, bem como, uma ferramenta para identificar necessidades futuras de planejamento e gestão para enfrentar desafios que permitam uma conservação mais eficaz dos ambientes costeiros.Fil: Sánchez Quinto, Andrés. Universidad Nacional Autónoma de México; MéxicoFil: Costa, Julliet Correa da. Universidade Federal de Santa Catarina; BrasilFil: Zamboni, Nadia Selene. Universidade Federal do Rio Grande do Norte; BrasilFil: Sanches, Fábio H. C.. Universidade Federal de Sao Paulo; BrasilFil: Principe, Silas C.. Universidade de Sao Paulo; BrasilFil: Viotto, Evangelina del Valle. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Casagranda, Maria Elvira. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Lima, Francisco A. da Veiga. Universidade Federal de Santa Catarina; BrasilFil: Possamai, Bianca. Universidade Federal Do Rio Grande.; BrasilFil: Faroni Perez, Larisse. Universidade Federal de Juiz de Fora; Brasi

    Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts
    corecore