506 research outputs found
Quantification of pathogens and markers of fecal contamination during storm events along popular surfing beaches in San Diego, California
Along southern California beaches, the concentrations of fecal indicator bacteria (FIB) used to quantify the potential presence of fecal contamination in coastal recreational waters have been previously documented to be higher during wet weather conditions (typically winter or spring) than those observed during summer dry weather conditions. FIB are used for management of recreational waters because measurement of the bacterial and viral pathogens that are the potential causes of illness in beachgoers exposed to stormwater can be expensive, time-consuming, and technically difficult. Here, we use droplet digital Polymerase Chain Reaction (digital PCR) and digital reverse transcriptase PCR (digital RT-PCR) assays for direct quantification of pathogenic viruses, pathogenic bacteria, and source-specific markers of fecal contamination in the stormwater discharges. We applied these assays across multiple storm events from two different watersheds that discharge to popular surfing beaches in San Diego, CA. Stormwater discharges had higher FIB concentrations as compared to proximal beaches, often by ten-fold or more during wet weather. Multiple lines of evidence indicated that the stormwater discharges contained human fecal contamination, despite the presence of separate storm sewer and sanitary sewer systems in both watersheds. Human fecal source markers (up to 100% of samples, 20-12440 HF183 copies per 100 ml) and human norovirus (up to 96% of samples, 25-495 NoV copies per 100 ml) were routinely detected in stormwater discharge samples. Potential bacterial pathogens were also detected and quantified: Campylobacter spp. (up to 100% of samples, 16-504 gene copies per 100 ml) and Salmonella (up to 25% of samples, 6-86 gene copies per 100 ml). Other viral human pathogens were also measured, but occurred at generally lower concentrations: adenovirus (detected in up to 22% of samples, 14-41 AdV copies per 100 ml); no enterovirus was detected in any stormwater discharge sample. Higher concentrations of avian source markers were noted in the stormwater discharge located immediately downstream of a large bird sanctuary along with increased Campylobacter concentrations and notably different Campylobacter species composition than the watershed that had no bird sanctuary. This study is one of the few to directly measure an array of important bacterial and viral pathogens in stormwater discharges to recreational beaches, and provides context for stormwater-based management of beaches during high risk wet-weather periods. Furthermore, the combination of culture-based and digital PCR-derived data is demonstrated to be valuable for assessing hydrographic relationships, considering delivery mechanisms, and providing foundational exposure information for risk assessment
Using rapid indicators for Enterococcus to assess the risk of illness after exposure to urban runoff contaminated marine water
Background: Traditional fecal indicator bacteria (FIB) measurement is too slow (>18 h) for timely swimmer warnings. Objectives: Assess relationship of rapid indicator methods (qPCR) to illness at a marine beach impacted by urban runoff. Methods: We measured baseline and two-week health in 9525 individuals visiting Doheny Beach 2007-08. Illness rates were compared (swimmers vs. non-swimmers). FIB measured by traditional (Enterococcus spp. by EPA Method 1600 or Enterolert™, fecal coliforms, total coliforms) and three rapid qPCR assays for Enterococcus spp. (Taqman, Scorpion-1, Scorpion-2) were compared to health. Primary bacterial source was a creek flowing untreated into ocean; the creek did not reach the ocean when a sand berm formed. This provided a natural experiment for examining FIB-health relationships under varying conditions. Results: We observed significant increases in diarrhea (OR 1.90, 95% CI 1.29-2.80 for swallowing water) and other outcomes in swimmers compared to non-swimmers. Exposure (body immersion, head immersion, swallowed water) was associated with increasing risk of gastrointestinal illness (GI). Daily GI incidence patterns were different: swimmers (2-day peak) and non-swimmers (no peak). With berm-open, we observed associations between GI and traditional and rapid methods for Enterococcus; fewer associations occurred when berm status was not considered. Conclusions: We found increased risk of GI at this urban runoff beach. When FIB source flowed freely (berm-open), several traditional and rapid indicators were related to illness. When FIB source was weak (berm-closed) fewer illness associations were seen. These different relationships under different conditions at a single beach demonstrate the difficulties using these indicators to predict health risk
Physics of leptoquarks in precision experiments and at particle colliders
We present a comprehensive review of physics effects generated by leptoquarks
(LQs), i.e., hypothetical particles that can turn quarks into leptons and vice
versa, of either scalar or vector nature. These considerations include
discussion of possible completions of the Standard Model that contain LQ
fields. The main focus of the review is on those LQ scenarios that are not
problematic with regard to proton stability. We accordingly concentrate on the
phenomenology of light leptoquarks that is relevant for precision experiments
and particle colliders. Important constraints on LQ interactions with matter
are derived from precision low-energy observables such as electric dipole
moments, (g-2) of charged leptons, atomic parity violation, neutral meson
mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of
indirect constraints on the strength of LQ interactions with the quarks and
leptons to make statements that are as model independent as possible. We
address complementary constraints that originate from electroweak precision
measurements, top, and Higgs physics. The Higgs physics analysis we present
covers not only the most recent but also expected results from the Large Hadron
Collider (LHC). We finally discuss direct LQ searches. Current experimental
situation is summarized and self-consistency of assumptions that go into
existing accelerator-based searches is discussed. A progress in making
next-to-leading order predictions for both pair and single LQ productions at
colliders is also outlined.Comment: 136 pages, 22 figures, typographical errors fixed, the Physics
Reports versio
Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH₄, CO₂ and N₂O
Total column amounts of CO, CH4, CO2 and N2O retrieved from SCIAMACHY nadir observations in ist near-infrared channels have been compared to data from a ground-based quasi-global network of Fourier-transform infrared (FTIR) spectrometers. The SCIAMACHY data considered here have been produced by three different retrieval algorithms, WFM-DOAS (version 0.5 for CO and CH4 and version 0.4 for CO2 and N2O), IMAP-DOAS (version 1.1 and 0.9 (for CO)) and IMLM (version 6.3) and cover the January to December 2003 time period. Comparisons have been made for individual data, as well as for monthly averages. To maximize the number of reliable coincidences that satisfy the temporal and spatial collocation criteria, the SCIAMACHY data have been compared with a temporal 3rd order polynomial interpolation of the ground-based data. Particular attention has been given to the question whether SCIAMACHY observes correctly the seasonal and latitudinal variability of the target species. The present results indicate that the individual SCIAMACHY data obtained with the actual versions of the algorithms have been significantly improved, but that the quality requirements, for estimating emissions on regional scales, are not yet met. Nevertheless, possible directions for further algorithm upgrades have been identified which should result in more reliable data products in a near future
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
SARS-CoV-2 wastewater surveillance for public health action
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has garnered extensive public attention during the coronavirus disease pandemic as a proposed complement to existing disease surveillance systems. Over the past year, methods for detection and quantifi cation of SARS-CoV-2 viral RNA in untreated sewage have advanced, and concentrations in wastewater have been shown to correlate with trends in reported cases. Despite the promise of wastewater surveillance, for these measurements to translate into useful public health tools, bridging the communication and knowledge gaps between researchers and public health responders is needed. We describe the key uses, barriers, and applicability of SARS-CoV-2 wastewater surveillance for supporting public health decisions and actions, including establishing ethics consideration for monitoring. Although wastewater surveillance to assess community infections is not a new idea, the coronavirus disease pandemic might be the initiating event to make this emerging public health tool a sustainable nationwide surveillance system, provided that these barriers are addressed
Representational predicaments for employees: Their impact on perceptions of supervisors\u27 individualized consideration and on employee job satisfaction
A representational predicament for a subordinate vis-à-vis his or her immediate superior involves perceptual incongruence with the superior about the subordinate\u27s work or work context, with unfavourable implications for the employee. An instrument to measure the incidence of two types of representational predicament, being neglected and negative slanting, was developed and then validated through an initial survey of 327 employees. A subsequent substantive survey with a fresh sample of 330 employees largely supported a conceptual model linking being neglected and negative slanting to perceptions of low individualized consideration by superiors and to low overall job satisfaction. The respondents in both surveys were all Hong Kong Chinese. Two case examples drawn from qualitative interviews illustrate and support the conceptual model. Based on the research findings, we recommend some practical exercises to use in training interventions with leaders and subordinates. © 2013 Copyright Taylor and Francis Group, LLC
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
- …