122 research outputs found

    Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability

    Get PDF
    The repeated evolution of C4 photosynthesis in independent lineages has resulted in distinct biogeographical distributions in different phylogenetic lineages and the variants of C4 photosynthesis. However, most previous studies have only considered C3/C4 differences without considering phylogeny, C4 subtype, or habitat characteristics. We hypothesized that independent lineages of C4 grasses have structural and physiological traits that adapt them to environments with differing water availability. We measured 40 traits of 33 species from two major C4 grass lineages in a common glasshouse environment. Chloridoideae species were shorter, with narrower and longer leaves, smaller but denser stomata, and faster curling leaves than Panicoideae species, but overall differences in leaf hydraulic and gas exchange traits between the two lineages were weak. Chloridoideae species had two different ways to reach higher drought resistance potential than Panicoideae; NAD-ME species used water saving, whereas PCK species used osmotic adjustment. These patterns could be explained by the interactions of lineage×C4 subtype and lineage×habitat water availability in affected traits. Specifically, phylogeny tended to have a stronger influence on structural traits, and C4 subtype had more important effects on physiological traits. Although hydraulic traits did not differ consistently between lineages, they showed strong covariation and relationships with leaf structure. Thus, phylogenetic lineage, photosynthetic pathway, and adaptation to habitat water availability act together to influence the leaf water relations traits of C4 grasses. This work expands our understanding of ecophysiology in major C4 grass lineages, with implications for explaining their regional and global distributions in relation to climate

    Phylogenetic Networks Do not Need to Be Complex: Using Fewer Reticulations to Represent Conflicting Clusters

    Get PDF
    Phylogenetic trees are widely used to display estimates of how groups of species evolved. Each phylogenetic tree can be seen as a collection of clusters, subgroups of the species that evolved from a common ancestor. When phylogenetic trees are obtained for several data sets (e.g. for different genes), then their clusters are often contradicting. Consequently, the set of all clusters of such a data set cannot be combined into a single phylogenetic tree. Phylogenetic networks are a generalization of phylogenetic trees that can be used to display more complex evolutionary histories, including reticulate events such as hybridizations, recombinations and horizontal gene transfers. Here we present the new CASS algorithm that can combine any set of clusters into a phylogenetic network. We show that the networks constructed by CASS are usually simpler than networks constructed by other available methods. Moreover, we show that CASS is guaranteed to produce a network with at most two reticulations per biconnected component, whenever such a network exists. We have implemented CASS and integrated it in the freely available Dendroscope software

    Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae

    Get PDF
    The Neurachninae is the only grass lineage known to contain C3, C4, and C3–C4 intermediate species, and as such has been suggested as a model system for studies of photosynthetic pathway evolution in the Poaceae; however, a lack of a robust phylogenetic framework has hindered this possibility. In this study, plastid and nuclear markers were used to reconstruct evolutionary relationships among Neurachninae species. In addition, photosynthetic types were determined with carbon isotope ratios, and genome sizes with flow cytometry. A high frequency of autopolyploidy was found in the Neurachninae, including in Neurachne munroi F.Muell. and Paraneurachne muelleri S.T.Blake, which independently evolved C4 photosynthesis. Phylogenetic analyses also showed that following their separate C4 origins, these two taxa exchanged a gene encoding the C4 form of phosphoenolpyruvate carboxylase. The C3–C4 intermediate Neurachne minor S.T.Blake is phylogenetically distinct from the two C4 lineages, indicating that intermediacy in this species evolved separately from transitional stages preceding C4 origins. The Neurachninae shows a substantial capacity to evolve new photosynthetic pathways repeatedly. Enablers of these transitions might include anatomical pre-conditions in the C3 ancestor, and frequent autopolyploidization. Transfer of key C4 genetic elements between independently evolved C4 taxa may have also facilitated a rapid adaptation of photosynthesis in these grasses that had to survive in the harsh climate appearing during the late Pliocene in Australia

    A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis

    Get PDF
    The grass Alloteropsis semialata is the only plant species with both C(3) and C(4) subspecies. It therefore offers excellent potential as a model system for investigating the genetics, physiology and ecological significance of the C(4) photosynthetic pathway. Here, a molecular phylogeny of the genus Alloteropsis is constructed to: (a) confirm the close relationship between the C(3) and C(4) subspecies of A. semialata; and (b) infer evolutionary relationships between species within the Alloteropsis genus

    C4 photosynthesis boosts growth by altering physiology, allocation and size.

    Get PDF
    C4 photosynthesis is a complex set of leaf anatomical and biochemical adaptations that have evolved more than 60 times to boost carbon uptake compared with the ancestral C3 photosynthetic type(1-3). Although C4 photosynthesis has the potential to drive faster growth rates(4,5), experiments directly comparing C3 and C4 plants have not shown consistent effects(1,6,7). This is problematic because differential growth is a crucial element of ecological theory(8,9) explaining C4 savannah responses to global change(10,11), and research to increase C3 crop productivity by introducing C4 photosynthesis(12). Here, we resolve this long-standing issue by comparing growth across 382 grass species, accounting for ecological diversity and evolutionary history. C4 photosynthesis causes a 19-88% daily growth enhancement. Unexpectedly, during the critical seedling establishment stage, this enhancement is driven largely by a high ratio of leaf area to mass, rather than fast growth per unit leaf area. C4 leaves have less dense tissues, allowing more leaves to be produced for the same carbon cost. Consequently, C4 plants invest more in roots than C3 species. Our data demonstrate a general suite of functional trait divergences between C3 and C4 species, which simultaneously drive faster growth and greater investment in water and nutrient acquisition, with important ecological and agronomic implications

    Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Get PDF
    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community

    A Survey of Combinatorial Methods for Phylogenetic Networks

    Get PDF
    The evolutionary history of a set of species is usually described by a rooted phylogenetic tree. Although it is generally undisputed that bifurcating speciation events and descent with modifications are major forces of evolution, there is a growing belief that reticulate events also have a role to play. Phylogenetic networks provide an alternative to phylogenetic trees and may be more suitable for data sets where evolution involves significant amounts of reticulate events, such as hybridization, horizontal gene transfer, or recombination. In this article, we give an introduction to the topic of phylogenetic networks, very briefly describing the fundamental concepts and summarizing some of the most important combinatorial methods that are available for their computation

    C4 photosynthesis evolved in warm climates but promoted migration to cooler ones

    Get PDF
    C4 photosynthesis is considered an adaptation to warm climates, where its functional benefits are greatest and C4 plants achieve their highest diversity and dominance. However, whether inherent physiological barriers impede the persistence of C4 species in cool environments remains debated. Here, we use large grass phylogenetic and geographical distribution data sets to test whether (1) temperature influences the rate of C4 origins, (2) photosynthetic types affect the rate of migration among climatic zones, and (3) C4 evolution changes the breadth of the temperature niche. Our analyses show that C4 photosynthesis in grasses originated in tropical climates, and that C3 grasses were more likely to colonise cold climates. However, migration rates among tropical and temperate climates were higher in C4 grasses. Therefore, while the origins of C4 photosynthesis were concentrated in tropical climates, its physiological benefits across a broad temperature range expanded the niche into warmer climates and enabled diversification into cooler environments

    Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives.

    Get PDF
    The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origin of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations
    corecore