57 research outputs found

    Robust time-varying multivariate coherence estimation: Application to electroencephalogram recordings during general anesthesia

    Get PDF
    Coherence analysis characterizes frequency-dependent covariance between signals, and is useful for multivariate oscillatory data often encountered in neuroscience. The global coherence provides a summary of coherent behavior in high-dimensional multivariate data by quantifying the concentration of variance in the first mode of an eigenvalue decomposition of the cross-spectral matrix. Practical application of this useful method is sensitive to noise, and can confound coherent activity in disparate neural populations or spatial locations that have a similar frequency structure. In this paper we describe two methodological enhancements to the global coherence procedure that increase robustness of the technique to noise, and that allow characterization of how power within specific coherent modes change through time.National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)National Institutes of Health (U.S.) (Grant R01-MH071847

    A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans

    Get PDF
    During awake consciousness, the brain intrinsically maintains a dynamical state in which it can coordinate complex responses to sensory input. How the brain reaches this state spontaneously is not known. General anesthesia provides a unique opportunity to examine how the human brain recovers its functional capabilities after profound unconsciousness. We used intracranial electrocorticography and scalp EEG in humans to track neural dynamics during emergence from propofol general anesthesia. We identify a distinct transient brain state that occurs immediately prior to recovery of behavioral responsiveness. This state is characterized by large, spatially distributed, slow sensory-evoked potentials that resemble the K-complexes that are hallmarks of stage two sleep. However, the ongoing spontaneous dynamics in this transitional state differ from sleep. These results identify an asymmetry in the neurophysiology of induction and emergence, as the emerging brain can enter a state with a sleep-like sensory blockade before regaining responsivity to arousing stimuli.National Institutes of Health (U.S.) (Grant K99-MH111748)National Institutes of Health (U.S.) (Grant R00-NS080911)National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant S10-RR023401)National Institutes of Health (U.S.) (Grant R01- NS062092)National Institutes of Health (U.S.) (Grant R01AG056015)National Institutes of Health (U.S.) (Grant P01GM118269)National Institutes of Health (U.S.) (Grant R01-EB009282

    Bayesian analysis of trinomial data in behavioral experiments and its application to human studies of general anesthesia

    Get PDF
    Accurate quantification of loss of response to external stimuli is essential for understanding the mechanisms of loss of consciousness under general anesthesia. We present a new approach for quantifying three possible outcomes that are encountered in behavioral experiments during general anesthesia: correct responses, incorrect responses and no response. We use a state-space model with two state variables representing a probability of response and a conditional probability of correct response. We show applications of this approach to an example of responses to auditory stimuli at varying levels of propofol anesthesia ranging from light sedation to deep anesthesia in human subjects. The posterior probability densities of model parameters and the response probability are computed within a Bayesian framework using Markov Chain Monte Carlo methods.National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)National Institutes of Health (U.S.) (Grant R01-MH071847

    Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features

    Get PDF
    Mucinous breast cancer (MBC) is mainly a disease of postmenopausal women. Pure MBC is rare and augurs a good prognosis. In contrast, MBC mixed with other histological subtypes of invasive disease loses the more favorable prognosis. Because of the relative rarity of pure MBC, little is known about its cell and tumor biology and relationship to invasive disease of other subtypes. We have now developed a human breast cancer cell line called BCK4, in which we can control the behavior of MBC. BCK4 cells were derived from a patient whose poorly differentiated primary tumor was treated with chemotherapy, radiation and tamoxifen. Malignant cells from a recurrent pleural effusion were xenografted in mammary glands of a nude mouse. Cells from the solid tumor xenograft were propagated in culture to generate the BCK4 cell line. Multiple marker and chromosome analyses demonstrate that BCK4 cells are human, near diploid and luminal, expressing functional estrogen, androgen, and progesterone receptors. When xenografted back into immunocompromised cycling mice, BCK4 cells grow into small pure MBC. However, if mice are supplemented with continuous estradiol, tumors switch to invasive lobular carcinoma (ILC) with mucinous features (mixed MBC), and growth is markedly accelerated. Tamoxifen prevents the expansion of this more invasive component. The unexpected ability of estrogens to convert pure MBC into mixed MBC with ILC may explain the rarity of the pure disease in premenopausal women. These studies show that MBC can be derived from lobular precursors and that BCK4 cells are new, unique models to study the phenotypic plasticity, hormonal regulation, optimal therapeutic interventions, and metastatic patterns of MBC

    Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method

    Get PDF
    In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous R−R intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the RRBP feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate (HR). In addition, the dynamic coherence, cross bispectrum, and their power ratio can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP2- OD006454)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant R01-DA015644)Massachusetts General Hospital (Clinical Research Center, UL1 Grant RR025758

    The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    Get PDF
    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis

    Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations

    Get PDF
    BACKGROUND: The Mini Mental State Examination (MMSE) is a cognitive test that is commonly used as part of the evaluation for possible dementia. OBJECTIVES: To determine the diagnostic accuracy of the Mini‐Mental State Examination (MMSE) at various cut points for dementia in people aged 65 years and over in community and primary care settings who had not undergone prior testing for dementia. SEARCH METHODS: We searched the specialised register of the Cochrane Dementia and Cognitive Improvement Group, MEDLINE (OvidSP), EMBASE (OvidSP), PsycINFO (OvidSP), LILACS (BIREME), ALOIS, BIOSIS previews (Thomson Reuters Web of Science), and Web of Science Core Collection, including the Science Citation Index and the Conference Proceedings Citation Index (Thomson Reuters Web of Science). We also searched specialised sources of diagnostic test accuracy studies and reviews: MEDION (Universities of Maastricht and Leuven, www.mediondatabase.nl), DARE (Database of Abstracts of Reviews of Effects, via the Cochrane Library), HTA Database (Health Technology Assessment Database, via the Cochrane Library), and ARIF (University of Birmingham, UK, www.arif.bham.ac.uk). We attempted to locate possibly relevant but unpublished data by contacting researchers in this field. We first performed the searches in November 2012 and then fully updated them in May 2014. We did not apply any language or date restrictions to the electronic searches, and we did not use any methodological filters as a method to restrict the search overall. SELECTION CRITERIA: We included studies that compared the 11‐item (maximum score 30) MMSE test (at any cut point) in people who had not undergone prior testing versus a commonly accepted clinical reference standard for all‐cause dementia and subtypes (Alzheimer disease dementia, Lewy body dementia, vascular dementia, frontotemporal dementia). Clinical diagnosis included all‐cause (unspecified) dementia, as defined by any version of the Diagnostic and Statistical Manual of Mental Disorders (DSM); International Classification of Diseases (ICD) and the Clinical Dementia Rating. DATA COLLECTION AND ANALYSIS: At least three authors screened all citations.Two authors handled data extraction and quality assessment. We performed meta‐analysis using the hierarchical summary receiver‐operator curves (HSROC) method and the bivariate method. MAIN RESULTS: We retrieved 24,310 citations after removal of duplicates. We reviewed the full text of 317 full‐text articles and finally included 70 records, referring to 48 studies, in our synthesis. We were able to perform meta‐analysis on 28 studies in the community setting (44 articles) and on 6 studies in primary care (8 articles), but we could not extract usable 2 x 2 data for the remaining 14 community studies, which we did not include in the meta‐analysis. All of the studies in the community were in asymptomatic people, whereas two of the six studies in primary care were conducted in people who had symptoms of possible dementia. We judged two studies to be at high risk of bias in the patient selection domain, three studies to be at high risk of bias in the index test domain and nine studies to be at high risk of bias regarding flow and timing. We assessed most studies as being applicable to the review question though we had concerns about selection of participants in six studies and target condition in one study. The accuracy of the MMSE for diagnosing dementia was reported at 18 cut points in the community (MMSE score 10, 14‐30 inclusive) and 10 cut points in primary care (MMSE score 17‐26 inclusive). The total number of participants in studies included in the meta‐analyses ranged from 37 to 2727, median 314 (interquartile range (IQR) 160 to 647). In the community, the pooled accuracy at a cut point of 24 (15 studies) was sensitivity 0.85 (95% confidence interval (CI) 0.74 to 0.92), specificity 0.90 (95% CI 0.82 to 0.95); at a cut point of 25 (10 studies), sensitivity 0.87 (95% CI 0.78 to 0.93), specificity 0.82 (95% CI 0.65 to 0.92); and in seven studies that adjusted accuracy estimates for level of education, sensitivity 0.97 (95% CI 0.83 to 1.00), specificity 0.70 (95% CI 0.50 to 0.85). There was insufficient data to evaluate the accuracy of the MMSE for diagnosing dementia subtypes.We could not estimate summary diagnostic accuracy in primary care due to insufficient data. AUTHORS' CONCLUSIONS: The MMSE contributes to a diagnosis of dementia in low prevalence settings, but should not be used in isolation to confirm or exclude disease. We recommend that future work evaluates the diagnostic accuracy of tests in the context of the diagnostic pathway experienced by the patient and that investigators report how undergoing the MMSE changes patient‐relevant outcomes

    A road map for designing and implementing a biological monitoring program

    Get PDF
    Designing and implementing natural resource monitoring is a challenging endeavor undertaken by many agencies, NGOs, and citizen groups worldwide. Yet many monitoring programs fail to deliver useful information for a variety of administrative (staffing, documentation, and funding) or technical (sampling design and data analysis) reasons. Programs risk failure if they lack a clear motivating problem or question, explicit objectives linked to this problem or question, and a comprehensive conceptual model of the system under study. Designers must consider what “success” looks like from a resource management perspective, how desired outcomes translate to appropriate attributes to monitor, and how they will be measured. All such efforts should be filtered through the question “Why is this important?” Failing to address these considerations will produce a program that fails to deliver the desired information. We addressed these issues through creation of a “road map” for designing and implementing a monitoring program, synthesizing multiple aspects of a monitoring program into a single, overarching framework. The road map emphasizes linkages among core decisions to ensure alignment of all components, from problem framing through technical details of data collection and analysis, to program administration. Following this framework will help avoid common pitfalls, keep projects on track and budgets realistic, and aid in program evaluations. The road map has proved useful for monitoring by individuals and teams, those planning new monitoring, and those reviewing existing monitoring and for staff with a wide range of technical and scientific skills

    AIChE 2016 Student Design Competition: Cell therapy for spinal cord injuries: Commercial manufacturing facility

    No full text
    The following contains preliminary design considerations for the large-scale production of neural stem cells for spinal cord injury regeneration therapy. The facility is designed to meet market demand for years 2017-2021 assuming there are currently 250,000 people, plus the addition of 12,000 people each year, with spinal cord injuries. In other words, 66,222 people per year can benefit from this process. Each batch process begins with 100,000 undifferentiated induced pluripotent adult stem cells and ends with approximately 2.17*10^11 differentiated neural stem cells that have gone through various measures to ensure quality. Each neural stem cell vial contains 1*10^7 cells and the breakeven price per vial was calculated to be 24.04atahurdlerateof5024.04 at a hurdle rate of 50%. The overall capital cost for the process is 871,606 with maximum recurring costs of about $7,000,000 from media, chemicals, vials, well racks, and operating costs each year.As can be seen in the "Sensitivity Analysis" section, the selling price of the vial has a major impact on the net present value (NPV) of the project. The cost of the media also can have a major impact on the net present value as it represents a major portion of the recurring costs. Therefore, if media costs go down, the NPV of this project will go up in response.Three or four operators are required per shift for operation depending upon the part of the process that is occurring. Most of the process is automated and at any given time, there is no more than nine of the nineteen pieces of equipment in operation and four of those are only on for a short amount of time.Safety considerations were of the utmost importance in designing this process. The facility is designed to minimize cross contamination by separating the sterile process from the rest of the facility. All waste is pretreated before entering city sewers to prevent the spread of possible blood borne pathogens to the community.It is recommended from the preliminary design that a detailed design be conducted as the project is a low capital investment, has a short payback period, and is very economically attractive as can be seen from the "Conclusions and Recommendations" section of the document
    corecore