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Abstract
In this paper, we present a point process method to assess dynamic baroreflex sensitivity by
estimating the baroreflex gain as focal component of a simplified closed-loop model of the
cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model
the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate
regressions on both the previous R-R intervals (RR) and blood pressure (BP) beat-to-beat
measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a
point-process filter, while the RR→BP feedforward transfer function representing heart
contractility and vasculature effects is simultaneously estimated by a recursive least-squares (RLS)
filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate.
In addition, the dynamic coherence, cross-bispectrum, and their power ratio can also be estimated.
All statistical indices provide a valuable quantitative assessment of the interaction between
heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the
proposed point process model to experimental recordings from eleven healthy subjects in order to
monitor cardiovascular regulation under propofol anesthesia. We present quantitative results
during transient periods, as well as statistical analyses on steady state epochs before and after
propofol administration. Our findings validate the ability of the algorithm to provide a reliable and
fast-tracking assessment of baroreflex sensitivity (BRS), and show a clear overall reduction in
baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that
instantaneous evaluation of arterial baroreflex control of heart rate may yield important
implications in clinical practice, particularly during anesthesia and in postoperative care.
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INTRODUCTION
A change of heart rate (HR), or beat-to-beat interval, in response to a change in arterial
blood pressure (BP), provides a noninvasive measure of the sensitivity of the baroreceptor-
cardiac reflex (baroreflex), which is essential in characterizing cardiovascular autonomic
control and explaining the complex interactions between heartbeat dynamics and
hemodynamics.27 Baroreflex sensitivity (BRS) assessment provides a valuable measure of
cardiovascular regulation in normal or diseased states.26, 11, 44 The evaluation of
baroreflex control of heart rate during or after general anesthesia has important implications
for clinical practice and patient safety. 9, 12, 58, 60, 41, 52, 53 General anesthetic drugs are
known to have direct effects on vascular tone and myocardial contractility, but little is
known about how they influence cardiovascular regulation. The cardiovascular side-effects
of general anesthetic agents can be serious and potentially life-threatening, particularly in
very critically ill patients. Despite the importance of understanding the underlying
physiological mechanism and its clinical value, few studies in the literature quantify the
effect of anesthetic drugs to on the alteration of cardiovascular control under general
anesthesia. Propofol (2,6-diisopropylphenol) is a lipid soluble intravenous anesthetic agent.
It is widely used for the induction and maintenance of general anesthesia, as well as
sedation.

One of the earliest studies quantifying the baroreceptor reflex under propofol anesthesia
demonstrated a “resetting” of the baroreflex. In this study, patient volunteers were
anesthetized with intravenous infusions of propofol combined with nitrous oxide. It was
found that in the steady state the subjects maintained both low blood pressure and low heart
rate. The authors concluded that this was the result of a “resetting” of the baroreflex, but that
there was no impairment of baroreflex sensitivity.22 In contrast, in a study that investigated
surgical subjects stimulated with mircrolaryngoscopy, it was found that under propofol
anesthesia, in addition to the inhibition of sympathetic nervous activity in the periphery, the
sensitivity of the baroreflex was decreased.58 Another study found that the sensitivity of the
baroreceptors was depressed by propofol infusion during general anesthesia, lasting for up to
60 minutes after the discontinuation of the propofol infusion in 13 healthy human volunteer
subjects.53 It should be emphasized that in these studies, BRS was estimated using a simple
sequence method based on linear regression analysis; however, the baroreceptor gain
function is known to be frequency-dependent, and the influence of vasculature and heart
contractility on BP has to be simultaneously considered for a correct identification of the
closed-loop cardiovascular control.3 Quantifying BRS under general anesthesia is an even
more challenging statistical signal processing problem, because BRS can change rapidly in
time as a result of anesthetic drug effects, compensatory maneuvers or pharmacological
interventions, with not easily predictable physiological responses.

The idea of estimating time-varying transfer function or coherence function of physiological
systems is not new (see reviews63, 49, 39). In the literature, several methods have been
proposed to estimate time-varying transfer or coherence function, such as the Kalman filter,
recursive leasts-quares (RLS), or time-varying optimal parameter search (TVOPS)
algorithms.3, 67, 65, 64 In a large body of reported work of our own,5, 13, 17, 18 we have
previously applied probabilistic point process models for estimating instantaneous indices of
HR, HR variability (HRV), as well as respiratory sinus arrhythmia (RSA). By
“instantaneous”, we mean that the statistics can be estimated in principle at any time point
with arbitrarily fine time resolution, without resorting to approximation by interpolation.
The point process framework enabled us to estimate these physiological indices in a
dynamic fashion at a millisecond timescale. Since the cardiovascular system presents several
closed-loop interactions between many variables, including R-R interval and BP, research
efforts have been devoted to quantifying BRS by estimating the baroreflex gain with a
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closed-loop system identification approach.6, 38, 2, 3, 29, 30 In this paper, we extend the
point process model of the heartbeat interval to include BP as a covariate, allowing for a
dynamic assessment of the baroreflex gain within the feedback BP→RR transfer function.
At the same time, a discrete-time RLS filter is used to track the parameters for estimating the
RR→BP frequency response in the feedforward cardiovascular pathway. This two-filter
estimation structure provides a direct assessment of the baroreflex control of heart rate, as
well as an instantaneous quantification of beat-to-beat cardiovascular variability, in an
online fashion.14 It is noted that the main focus of this paper is to illustrate the strength of
the point process method as potential application in clinical anesthesiology, a thorough and
systematic comparison between our method and other linear/nonlinear ARX methods is
beyond the scope of the current paper. Nevertheless, as an illustration, we compare the
tracking performance of the point process filter and the standard RLS filter in analyzing
known transient dynamics of BRS. Another important issue of cardiovascular modeling is
goodness-of-fit. The current point process approach provides a rigorous statistical
framework for model evaluation, which is not available for the standard linear/nonlinear AR
or ARX type methods (based on R-R intervals).

In healthy subjects, the heartbeat interval dynamics are known to be nonlinear or even
possibly chaotic.45, 48 In a previous investigation,18, we have modeled the nonlinear
heartbeat dynamics within the point process framework using the beat intervals alone. In the
present study, in order to characterize a potential nonlinear interaction between the beat
intervals and blood pressure measures, we model the heartbeat interval mean using a bilinear
system. The use of the bilinear system identification also allows us to estimate the dynamic
cross-bispectrum between the R-R and BP series, as well as the power ratio between the
cross-spectrum and cross-bispectrum. We apply our point process model to experimental
physiological recordings of eleven healthy subjects during induction of propofol anesthesia,
51 and we conduct quantitative assessment of baroreflex control during both transient
periods as anesthesia is initiated, and performing statistical analyses on steady-state epochs
before and after propofol administration.

HEARTBEAT INTERVAL PROBABILITY MODEL
A Probability Model for the Heartbeat Interval

Given a set of R-wave events {uj}j=1
J detected from the electrocardiogram (ECG)

waveform, let RRj = uj − uj−1 > 0 denote the jth R-R interval. By treating the R-waves as
discrete events, we may develop a probabilistic point process model in the continuous-time
domain. Assuming history dependence, the waiting time t − uj (as a continuous random
variable, where t > uj) until the next R-wave event can be modeled by an inverse Gaussian
model:4, 5, 13

(1)

where uj denotes the previous R-wave event occurred before time t, θ > 0 denotes the shape
parameter (which might also be time-varying), and µRR(t) denotes the instantaneous R-R
mean parameter. Note that when the mean µRR(t) is much greater than the variance, the
inverse Gaussian can be well approximated by a Gaussian model with a variance equal to
µRR

3(t)/θ. The Gaussian approximation will be used for some derivations presented later. In
point process theory, the inter-event probability p(t) is related to the conditional intensity
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function (CIF) λ(t) by a one-to-one transformation:10 . The estimated CIF
can be used to evaluate the goodness-of-fit of the probabilistic heartbeat interval model.

Instantaneous Indices of HR and HRV—Heart rate is defined as the reciprocal of the
R-R intervals. For time t measured in seconds, the new variable r = c(t − uj)−1 (where c = 60
s/min is a constant) can be defined in beats per minute (bpm). By virtue of the change-of-
variables formula, from Eq. (1) the HR probability p(r) = p(c(t − uj)−1) is given by

, and the mean and the standard deviation of HR r can be derived:4

(2)

where μ̃ = c−1μRR and θ̃ = c−1θ. Essentially, the instantaneous indices of HR and HRV are
characterized by the mean μHR and standard deviation σHR, respectively. In a non-stationary
environment, where the probability distribution of HR is possibly slowly changing over
time, we aim to dynamically estimate the instantaneous mean μRR(t) and instantaneous
shape parameter θt in Eq. (1) so that the evolution of the probability density p(r) can be
tracked in an online fashion.

Modeling the Instantaneous Heartbeat Interval’s Mean
A common methodological way to understand a biological or physiological system is
through system identification.40 In general, let us consider a causal, continuous-time
nonlinear mapping F between an output variable y(t) and two input variables x(t) and u(t).
Expanding the Wiener-Volterra series of function F (up to the second order) with respect to
inputs x(t) and u(t) yields:55

(3)

where F(·) : ℝ2→ℝ, and a(·),b(·),h1(·,·),h2(·,·), and h3(·,·) are Volterra kernels with
appropriate orders. In our case of system identification, y(t) will be replaced by μRR(t), x(t)
will be replaced by previous R-R intervals, u(t) will be replaced by BP, and the continuous-
time integral will be approximated by a finite and discrete summation.

Let us consider two specific cases of discrete-time Volterra series expansion:

Case (a): Dropping off all of second-order terms in the Volterra series expansion (3), we
obtain a bivariate discrete-time linear system:

(4)
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where the first two terms represent a linear autoregressive (AR) model of the past R-R
intervals, a0 compensates the nonzero mean effect of the R-R measurements, and BPt−j
denotes the previous jth BP value prior to time t. The BP in Eq. (4) can be either the
systolic or the diastolic value, and it will be preprocessed to have zero mean (since the
DC component is of no interest to model the oscillation). Eq. (4) can also be viewed as
a linear autoregressive moving average (ARMA) model (without the noise term).37

Note that here we have used RRt−i instead of μRR(t − i) as regressors since this would
require a higher order p due to the long-range dependence of μRR(t − i) under a very
small timescale.

Case (b): Dropping off the last two quadratic terms in the Volterra series expansion (3),
we obtain

(5)

where  denotes the local mean of the past ℓ R-R
intervals. Eq. (5) is a bivariate bilinear system,62 which can also be viewed as a
nonlinear ARMA or nonlinear ARX model.37

In the current paper, with the goal to study HR responses to BP, Eqs. (4) and (5) will be used
for modeling the instantaneous mean μRR(t) of the inverse Gaussian distribution defined in
Eq. (1).

Adaptive Point Process Filtering
Let ξ = [{ai}i=0p, {bj}j=1q,{hkl},θ]T denote the vector that contains all unknown parameters
in the heartbeat interval probability model. In order to adapt the model in a nonstationary
environment, we can recursively estimate the parameters via adaptive point process filtering.
5 A state-space formulation of the discrete-time point process filtering algorithm is described
here:

where P and W denote the parameter and noise covariance matrices, respectively; and Δ
denotes the time bin size. The choice of bin size reflects the timescale of estimation interest,
we often use Δ=5 ms. Diagonal noise covariance matrix W, which determines the level of
parameter fluctuation at the timescale of Δ, can be either initialized empirically from a
random-walk theory or estimated from a maximum likelihood estimate. Symbols

 denote the first- and second-order partial derivatives of the CIF
with respect to ξ at time t = kΔ, respectively. The indicator variable nk = 1 if a heart beat
occurs in time ((k − 1)Δ,kΔ] and 0 otherwise. The point process filtering equations can be
viewed as a point process analog of the Kalman filtering equations (for continuous-valued
observations).28 Given a predicted (a priori) estimate ξk|k−1, the innovations [nk − λkΔ] is
weighted by Pk|k−1(∇log λk) (viewed as an adaptation gain) to further produce the filtered (a
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posteriori) estimate ξk|k. Since the innovations term is likely to be nonzero in the absence of
a beat, the parameters are always updated at each time step k. The a posteriori covariance
Pk|k is derived based on a Gaussian approximation of the log-posterior.

Closed-loop Cardiovascular Control
The cardiovascular control on arterial blood pressure can be modeled as a closed-loop
system,23, 6, 3 and it can be illustrated by the simplified diagram shown in Fig. 1. In the
feedforward pathway (RR→BP), the R-R intervals influence the forthcoming BP measure as
defined by the H12 transfer function (either in the time or frequency domains), including the
effects of heart contractility and vasculature tone on arterial pressure. In the feedback
pathway (BP→RR), the baroreceptors modulate the beat-to-beat interval through a feedback
control mechanism, where the H21 transfer function includes both the baroreflex and the
autonomic control to the heart. It shall be pointed out that a complete model of the
cardiovascular control system can be far more complex. However, in order to focus our
attention on the mentioned closed-loop interaction (in the dashed box in Fig. 1), we have
purposely ignored all other possible effects, including the important respiratory influence
directly affecting the considered loop.

Modeling the Baroreflex Gain (BP→RR)—First, we aim to assess the BP→RR
feedback pathway, which is directly related to the HR baroreflex. In the literature, baroreflex
sensitivity was usually either estimated from a time-domain based sequence method by
regression on series sequences,44, 35 or estimated from a frequency-domain based coherence
method.21 These two methods are purely data-driven, and therefore might be sensitive to the
outliers within the selected samples. Here, we estimate the BRS through a closed-loop
parametric bivariate AR model.3, 43 Moreover, our point process model is adaptive and
sidesteps the local stationarity assumption, therefore it is capable of capturing the non-
stationary nature of the physiological signals due to the drastic cardiovascular control
compensatory changes. Specifically, in light of Eq. (4) we can compute the frequency
response for the baroreflex (BP→RR)

(6)

where f1 and f2 denote the rate (beat/s) for the R-R and BP-BP intervals, respectively; here
we assume f1 ≈ f2 ≡ f (namely, the heartbeat period is about the same as the BP-event
period). The order of the AR model also determines the number of poles, or oscillations, in
the frequency range. Modifying the AR coefficients is equivalent to changing the positions
of the poles and reshaping the frequency response curve. With the time-varying AR
coefficients {ai(t)} and {bj(t)} estimated from the point-process filter, we may evaluate the
dynamic frequency response of Eq. (6) at different ranges (LF, 0.04–0.15 Hz; HF, 0.15-
min{0.5,0.5/RR} Hz, where 0.5/RR denotes the Nyquist sampling frequency). The
frequency-dependent baroreflex gain, characterized by |H12(f)|, represents the effect of BP
on heartbeat, mediated by the neural autonomic reflex. Since the R-R interval is also
influenced by respiratory input (Fig. 1) at the HF range, it is more common and meaningful
to examine the baroreflex gain at the LF range.

Modeling the Feedforward Gain (RR→BP)—Simultaneous to baroreflex assessment,
we aim to model the RR→BP feedforward pathway, which enables us to evaluate the impact
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of the heartbeat durations on the hemodynamics. Similar to Eq. (4), BP is also modeled by a
bivariate linear AR model:

(7)

where μRR(k − i) represents the estimated instantaneous R-R mean value at the time bin
when BP-events occur. The coefficients {ci(k)}i=0p and {di(k)}i=1p are dynamically tracked
by a RLS filter (viewed as a special kind of Kalman filter).34 Unlike the point-process filter,
the update occurs only at the occurrence time of BP-events. Similarly, we also estimate the
frequency response of the RR→BP pathway:

(8)

where f denotes the sampling rate (beat/s) for BP-BP intervals. Likewise, we can estimate
the dynamic gain and phase of H21(f) at each single BP-event (whereas during between-
events period, the coefficient estimates remain unchanged).

Estimating the Dynamic Coherence—Let BP (f) and RR(f) denote the power spectra
of the BP and R-R series, respectively. To estimate the cross-spectrum in the closed-loop
system, we assume that the noise variance and the nonlinear interactions in the feedforward
and feedback loops are sufficiently small. Given the BRS, we can estimate the cross-
spectrum (between BP and RR) in the feedback loop as uy (f) ≈ H12 (f) BP (f). As the
coefficients {ai(t)} and {bj(t)} are iteratively updated in time, the point-process filter
produces a direct assessment of instantaneous (parametric) baroreflex gain as well as cross-
spectrum at a very fine temporal resolution without using a window-based identification.
Similarly, we can estimate the cross-spectrum in the feedforward pathway: yu (f) ≈ H21 (f)

RR (f), where RR (f) can be estimated from

(9)

from which we can also compute the time-varying LF/HF power ratio. Note that the unit of
the time-varying R-R spectrum in Eq. (9) is cycles/beat, and we have assumed that the
variance σBP2(t) (estimated from the feedforward pathway) remains unchanged between two
consecutive systolic values. Furthermore, the instantaneous normalized cross-spectrum (i.e.,
coherence) can be computed as

(10)
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where |·| denotes the modulus of a complex variable. The second equality holds due to the
fact that , where * denotes the Hermitian operator (note that |

yu |=| uy | and they are anti-phase against each other). The third equality indicates the fact
that the time-varying coherence function can be expressed by the multiplication of two
(feedback and feedforward) time-varying transfer functions,65 computed from Eqs. (6) and
(8), respectively. Our time-varying closed-loop coherence function can be computed within
very fine timescale, several studies have examined its properties (e.g., stability, numerical
bound) in detail.50, 65, 66

Estimating the Dynamic Cross-Bispectrum—If μRR(t) is identified by a bilinear
system as in Eq. (5), we can estimate the higher-order statistics from the nonlinear system.
For simplicity of computation, we further assume that the RR and BP measurements are all
Gaussian (such that their own third and higher-order cumulant statistics are zeros), and the
cross-bispectrum between input RR (denoted as x) and output μRR (denoted as y) is given
by:

(11)

where  denotes the Fourier transform of the 2nd-order
kernel coefficients {hkl}.

Proof: see the APPENDIX for details of deriving Eq. (11).

Furthermore, let h(t) denote a vector that contains all of 2nd-order coefficients {hij(t)}; in
light of Eq. (10) and the Parseval’s theorem, it follows that

. In light of this property, we
can define an instantaneous index that quantifies the fractional contribution between the
cross-spectrum and the cross-bispectrum:

(12)

where . The spectrum norm defines the area integrated over the
frequency range under the spectral density curve. Since the norm units of spectral and
bispectral density are the same, their ratio ρ(t) is dimensionless. The “≈” in Eq. (12) is due
to the approximation of a jointly Gaussian assumption used in the proof (see APPENDIX)—
in our case, u(t) and x(t) are approximately marginally Gaussian. A small value of ρ implies
a presence of significant (nonzero) values in {hkl} (namely, indirect evidence of nonlinearity
or bilinear interactions), whereas a perfect linear Gaussian model would imply that ρ = 1.
Therefore, the ρ-statistic can be used to characterize the linear/nonlinear frequency
interactions of two signals. Because ρ(t) is a function of the estimated parameters, this index
can be estimated at each moment in time, and is updated at the beat as well as in-between
beats.
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DATA AND RESULTS
Simulation

Before application to real data, we first tested our proposed point-process filter on simulated
data, and compared its performance with the standard method. Specifically, we generated
the R-R and RP time series of 10 min using a closed-loop bivariate AR model. For
simplicity and illustration purposes, we present a linear case where the BRS has two
oscillatory frequencies, one at 0.1 Hz (LF range), and the other at 0.3 Hz (HF range). Data
were generated to simulate a baroreflex gain at 0.1 Hz, dropping abruptly from 1.75 to 0.96
at 300 seconds, and a gain at 0.3 Hz (HF) always constant at 1. The synthetic RR and BP
traces (from one simulation) are shown in Figs. 2a and 2b, respectively.

We conducted 20 Monte Carlo runs (with different realizations) and in each run estimated
the feedback pathway BRS using the adaptive point-process filter. A correct model size was
used (thereby with no model selection), and the model parameters were estimated based on
the first 200 samples using the least-squared method. To compare tracking ability and
estimation accuracy, we also applied an adaptive RLS filter using a forgetting factor 0.98.17

The instantaneous BRS estimates (LF and HF) are shown in Fig. 2c (from one Monte Carlo
run). For the point-process filter, the mean±SD statistics of the BRS during the first and
second time periods are 1.75±0.09 and 0.97±0.05, respectively; whereas for the RLS filter,
the mean±SD statistics of the BRS during the first and second time periods are 1.71±0.05
and 0.90±0.01, respectively. Mainly due to the exponential smoothing window, the RLS
filter produces a less variable BRS trajectory, as reflected by the lower variance in the
estimate. However, the point process algorithm achieves a better precision, as reflected by
the mean statistics, despite the small difference (rank-sum test, statistically non-significant).
The averaged traces of the BRS estimate from both algorithms (LF only) are shown in Fig.
2d. Clearly, the point-process filter exhibits a faster tracking ability than the RLS filter
during the transient period. Furthermore, the point-process filter reaches the steady state
around 360 s, which is also faster than the RLS filter (around 415 s).

Experimental Protocol
A total of fifteen healthy volunteer subjects (mean age 24 ± 4), gave written consent to
participate in this study approved by the Massachusetts General Hospital (MGH)
Department of Anesthesia and Critical Clinical Practices Committee, the MGH Human
Research Committee and the MGH General Clinical Research Center. Subjects were
evaluated with a detailed review of his/her medical history, physical examination,
electrocardiogram, chest X-ray, a urine drug test, hearing test, and for female subjects, a
pregnancy test. Any subject whose medical evaluation did not allow him or her to be
classified as American Society of Anesthesiologists (ASA) Physical Status I was excluded
from the study. Other exclusion criteria included neurological abnormalities, hearing
impairment, and use of either prescribed or recreational psychoactive drugs. Intravenous and
arterial lines were placed in each subject. Propofol was infused intravenously using a
previously validated computer-controlled delivery system running STANPUMP (a computer
controlled delivery system59) connected to a Harvard 22 syringe pump (Harvard Apparatus,
Holliston, MA), using the well-established pharmacokinetic and pharmacodynamic models.
56, 57 In Subject 1, five effect-site target concentrations (0.0, 1.0, 2.0, 3.0 and 4.0 µg/ml)
were each maintained for about 15 minutes respectively, where concentration level-0
corresponds to the conscious and wakefulness baseline. In the remainder of subjects, an
additional effect-site target concentration of 5.0 µg/ml was administered. Capnography,
pulse oximetry, ECG, and arterial blood pressure (ABP) were monitored continuously by an
anesthesiologist team throughout the study. Bag-mask ventilation with 30% oxygen was
administered as needed in the event of propofol-induced apnea. Because propofol is a potent
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peripheral vasodilator, phenylephrine was administered intravenously to maintain mean
arterial pressure within 20% of the baseline value. ECG and ABP were recorded at a
sampling rate of 1 kHz using a PowerLab ML795 data acquisition system (ADInstruments,
Inc., Colorado Springs, CO). Electroencephalogram (EEG) data were also recorded, and the
EEG analysis was reported elsewhere.51 Four recordings (Subjects #6, 11, 12, 14) were
excluded for analysis either because the subjects fell asleep during the experimental
behavioral protocol or because of poor quality of the data recordings. In the present study,
we only study the epochs of level-0 (baseline) and level-1 (1.0 µg/ml) drug concentration,
and focus on the comparison of these two levels (in both transient period and steady state
period). This comparison is also aimed to reduce any possible bias caused by the intravenous
infusion of Phenylephrine during the administration of higher concentrations of propofol.

In Fig. 3, the raw R-R interval series and the systolic BP (SBP) measures are shown for five
selected subjects during baseline and level-1 drug concentration. Note that under induction
of propofol anesthesia, there were moments where SBP recordings were corrupted (see Fig.
3, level-1 SBP traces). Such artifacts, caused by periodic collection of blood samples, were
excluded from the analysis. A preliminary empirical statistical analysis of the R-R intervals
indicated a better fit by the inverse Gaussian distribution (P < 0.05, Kolmogorov-Smirnov
test) as compared with a Gaussian distribution, thus validating our probability model used in
Eq. (1). The inverse Gaussian distribution bears a similar shape as the Gaussian distribution,
but with a longer tail for modeling data outliers. See Fig. 4 for a clear illustration.

Model Selection and Goodness-of-Fit
In the present experiment, the SBP measure was used for baroreflex evaluation. For the
linear model (Eq. 4), we assumed p = q, the bivariate order was fitted from 2 to 8, and the
optimal order was chosen according to the Akaike information criterion (AIC). A
preliminary analysis on model order concluded that increasing model order beyond 8 did not
yield significant improvement in model fit (sometimes results were even worse). For the
nonlinear model (Eq. 5), the order r = 2 was chosen empirically to avoid demanding
computation burden, and the initial hij was estimated by fitting the residual error via least-
squares.7 During online estimation, the stability of the AR model was examined and always
assured (i.e., the poles are within unit circle; if the condition is violated, previous estimates
are retained), such that the time-varying coherence function is always bounded by 1. Upon
estimating the CIF at every time step, the goodness-of-fit of the probabilistic heartbeat
model is evaluated by a one-sided Kolmogorov-Smirnov (KS) test, as well as the
autocorrelation independence test (for details, see previous references 4, 5, 17, 18).

For all the considered data, our point process model achieves a quite satisfactory
performance in model goodness-of-fit. Among a total of 22 epochs, our probability model
with a linear predictor is able to provide estimates within 95% confidence intervals in the
KS test for 17 epochs, and the average percentage of the time-rescaled points that fall within
the 95% confidence bounds is 89% among all of fits for all epochs. This implies that roughly
77% of the beats are correctly predicted by our probability model, which achieved much
better results (in terms of KS distance) than any other window-based heartbeat interval
model.4 If the criterion is relaxed to 90%, the success percentage is increased to 91%. In
contrast, other standard time-varying models produced very poor goodness-of-fit (none of
them within 95% confidence bounds), mainly due to either the beat-to-beat updating
structure, or to interpolation biases (see previous study4).

Quantitative Assessment
We first examined the tracking performance of the point-process filter during transient
dynamics from level 0 to level 1, when the baroreflex gain may undergo a sudden shift. We
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use Subject 1 to illustrate this point in Fig. 5. As seen from the figure, the baroreflex
responses were triggered by injection of the anesthetic drug around 1890 s, which was
indeed accompanied by a drop in the baroreflex gain (a rough decrease of about 55%), with
the point-process filter quickly capturing the sudden change. In addition to estimating
instantaneous (HR, HRV, and baroreflex) statistics, the adaptive filter also tracks the
temporal evolution of the probability distribution (beyond first and second order cumulant
statistics) of the heartbeat interval. The KS plot and autocorrelation plot (data not shown)
both indicate that the goodness-of-fit of the model for these data is very good.

For each subject and each epoch, we computed the following instantaneous indices: μHR,
σHR, SBP, coherence, ρ, LF/HF, and BRS. For each recording, to compute corresponding
time-averaged indices, one epoch of 10 min was selected before propofol administration
(level 0), whereas a second epoch of 10 min was selected after drug administration (level 1).
The mean±SD statistics for each of the considered indices from all 11 subjects and 22
epochs are reported in Table 1. The level-1 values in bold indicate decreasing trends from
the level-0 baseline to the start of administration of propofol anesthesia (level 1). To
elucidate the table, we observed a nearly ubiquitous (subject ratio: 10/11) decrease in the
SBP value. However, results in HR and HRV did not show a consistent trend across
subjects. The mean statistics of the LF/HF index, which is believed to reflect the
sympathetic-vagal balance 1, also did not show dramatic or consistent trends. Conversely,
we did observe a clear reduction of baroreflex gain, more dominant in LF (subject ratio:
10/11) than in HF (subject ratio: 8/11). These observations are consistent with published
results in the literature.12, 60 This may indicate that under propofol anesthesia the
parasympathetic activity is attenuated, and that the baroreflex responses are reset to allow
HR modulation at a lower BP than during wakefulness. Furthermore, the reason why the
reduction in BRS is less significant in HF, and why we have not found significant shifts in
the sympatho-vagal balance as quantified by the LF/HF index, might have been additionally
influenced by the fact that the oscillatory rhythms associated with this frequency range are
highly influenced by changes in the respiratory patterns elicited by the involuntary
respiratory mechanism during propofol anesthesia.

To conduct a group study analysis on BRS, we computed the “relative” BRS ratio for all
eleven subjects, by which the BRS at level-1 drug concentration is normalized with respect
to the corresponding gain value at the level-0 baseline. The group statistics are shown in Fig.
6a; clearly, the median BRS ratios at the LF and HF ranges are smaller than 1, indicating an
overall decrease (highly significant in LF where the 95 percentile box is entirely below 1) of
the barorefeflex gain with anesthesia. In addition, we examined the relationship between
SBP and relative BRS ratio. It is worth noting that, although there is a decreasing trend in
the SBP value from level-0 to level-1 drug concentration (i.e., the relative SBP ratio is
smaller than 1), there is no correlation between the relative SBP ratio (level-1/level-0) and
the relative BRS (LF) ratio (level-1/level-0), as shown in Fig. 6b.

We also investigated the role of nonlinearity as assessed by the bilinear model before and
during induction of propofol anesthesia. Specifically, we compared the time-averaged ρ-
ratio statistic between the wakefulness baseline and the level-1 propofol concentration. In all
but three subjects (Subjects #1, 2 and 9), the ρ value (LF) is slightly greater (statistically
non-significant in paired Mann-Whitney test for 11 subjects, P = 0.0582) in the baseline
(level-0) condition than in the level-1 anesthesia condition, which suggests that the bilinear
interaction between BP and RR in the LF range became more active or strengthened under
propofol anesthesia, where the parasympathetic activity may be suppressed or attenuated.31

The phenomenon of increasing nonlinearity in heartbeat interval dynamics in the presence of
attenuated parasympathetic activity is also in agreement with our previous observations in
another experimental protocol.17, 18 Meanwhile, the mean coherence was slightly
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decreased or remained unchanged after the induction of propofol anesthesia in the majority
of the subjects (Table 1). A low value of coherence also suggests that the BP-RR relation
may have either nonlinear components, or that the two signals are less linearly correlated in
the frequency domain. A statistical summary is provided by the box plots of coherence and ρ
statistics from all 11 subjects, as shown in Fig. 7. Here the group median ρ-values (level-0 to
level-1, LF: 0.56→0.43; HF: 0.35→0.34) point at a mild increase of nonlinear dynamics,
accompanied by a slight decrease in linear coherence (LF: 0.83→0.78; HF: 0.75→0.70), but
a statistical (unpaired Mann-Whitney) test on the population level did not reveal significant
differences. Another noteworthy point from Fig. 7 is that our results indicated that there is
more nonlinear interaction in HF (lower median ρ-ratio as well as lower median coherence)
than in the LF range, which is somewhat in disagreement with previous findings pointing at
more prominent HRV nonlinearities within the VLF and LF ranges. This could be because
the current model has not considered the influence of the respiratory input (which is acting
within the HF range) in the feedback pathway (Fig. 1), with consequent estimation bias in
the HF range, or more simply because the linear coupling is higher in LF, thus reducing the
role of nonlinearity as percentage of the total variability; furthermore, the presence of
nonlinear effects of RSA, mainly in the HF range, may enhance nonlinear RR-BP dynamics
at these frequencies, thus explaining our observations. However, further analysis is required
to examine this issue with more controlled data and the inclusion of respiratory measures, so
to provide clearer interpretations and give meaning to the pronounced nonlinear dynamics
beyond just their association with a higher degree of decoupling between the variables of
interest. For example, measuring and analyzing additional variables directly related to
vascular tone, resistance dynamics, or blood flow autoregulation, where nonlinear effects
play an important role, could be included in our nonlinear model and would help shed more
light into such mechanisms, as well as provide important insights into more complex
cardiovascular control dynamics.

Further insights on this final issue may be gained by looking at the time-varying coherence
trends within the level-0 and level-1 epochs considered for one subject. In Fig. 8 the
instantaneous coherence between SBP and RR shows that these two series are strongly
correlated at the HF range, first staying around 0.3 Hz along the wakefulness baseline and
then shifting around 0.25 Hz at level-1 of propofol concentration. This is likely due to a
slowdown of the respiratory rhythm, which influences both SBP and RR (see Fig. 1). In the
LF range, as generally lower and less consistent values of peak coherence are observed, it is
important to focus the attention on the sudden drop in coherence at 500–600 ms since the
start of propofol administration. Allegedly, the instantaneous identification indicates the
exact moment in time where the autonomic-hemodynamic linear coupling generating the
Meyer waves may be completely lost, and SBP and RR variability may be attributed solely
to the respiratory influence (in HF).

Discussion
In cardiovascular signal processing, growing efforts have been proposed in devising transfer
function models for analyzing cardiovascular regulation.54, 46, 3 The assumption for using
transfer function analysis for estimating baroreflex gain depends on the linear relationship
between RR and BP through the autonomic feedback gain to the heart.7, 50, 47 From a more
mathematical point of view, using a closed-loop bivariate AR model and through system
identification, the bivariate AR coefficients are able to provide a compact description of the
autospectrum and cross-spectrum between the RR and BP series.7, 50, 66

Although the adaptive point-process filter overcomes critical issues related to the inherent
non-stationarity of the data, a sensible initialization of model parameters is still very
important for determining the correct estimate for baroreceptor sensitivity. Currently, our
initial model parameters were identified by least-squares estimation using short segments of
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recordings during each epoch. However, if the steady state has not been reached or there is a
strong trend shift during the epoch, it is likely that the initialized parameters are insufficient
or inaccurate to characterize the remaining data recordings. A practical way to alleviate this
issue is to estimate the parameters from time to time or based on other observed
physiological markers.

In general, the baroreflex LF gain is thought to be more relevant to HR control, which is
responsible for translating specific BP oscillations (the Meyer waves) into automatic outflow
modulation to the SA node. Nevertheless, the baroreflex HF gain is believed to be of vagal
origin and has sufficiently high coherence during positive pressure ventilation.32 In our
current model, the baroreflex gain is estimated through the frequency response of a linear
bivariate system. Therefore, we have implicitly assumed that baroreflex sensitivity, the
relation of HR responses to changing BP, is purely linear. In a complex physiological
system, this assumption is certainly a subject of debate and might deviate from the truth of
physiology.25 Indeed, the baroreflex responses normally exhibit a sigmoid or S-shape curve.
23 However, we believe that the response curve is approximately linear in the region around
the BP set point. Shall BP oscillate in ranges far from set point, our model would likely yield
a biased estimate of the baroreceptor gain. Nevertheless, at the same time the nonlinear
structures incorporated into the model would allow for quantification of specific markers
(e.g., the ρ index), which point at the present of relevant nonlinear dynamics and invite a
more cautious interpretation of the linear assessment.

Another limitation of our current probability model is that we have not considered the
influence of respiratory input on the R-R intervals and hemodynamics, while it has been
well known that respiration also modulates HR through the RSA mechanism;17

consequently, the change of respiratory patterns during propofol anesthesia is likely to bias
the baroreflex gain estimate (specially at the HF range). This simplification was purposely
chosen in order to make our mathematical analysis clear and simpler, but the possibility of
inclusion of other physiological covariates into the model is attainable and will be explored
in future studies.

CONCLUDING REMARKS
In cardiology, as BRS is known to be variable and non-stationary at various physiological or
pharmacological conditions,27 it would be informative to monitor it continuously as a
marker of autonomic-mediated hemodynamic control. Modeling and monitoring non-
stationary dynamics of physiological systems continues to be an active research topic.4, 5,
65, 66. In this paper, we have proposed a point process method for assessing the baroreflex
control of heart rate before and during induction of propofol anesthesia, as applied to 11
healthy subjects. The investigation focuses on the comparison of BRS between the periods
during awake baseline and after an initial concentration of drug is administered. In a non-
stationary scenario where the physiological state may change dramatically, dynamic
assessment of baroreflex control during the transient period is of vital importance. The study
of the transient periods due to physiological or pharmacological changes in cardiovascular
system has demonstrated the capacity of the point-process filter to quickly capture fast
physiologic changes, when baroreflex responses are supposedly triggered, and consequently
accompanied by a significant drop in the instantaneous baroreflex gain. Our method
potentially provides a real-time indicator for monitoring the baroreflex control of HR during
induction of general anesthesia. The analysis of steady-state periods showed a clear
reduction of baroreflex gain in the LF region from baseline to the start of anesthesia,
accompanied by a decrease in SBP. This might suggest that the baroreflex responses were
reset during propofol anesthesia to control HR at a lower BP than during wakefulness and
that the quantitative baroreflex gain decreased after administration of propofol anesthesia.
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The shift in the HR/BP set point may reflect propofol’s systemic vasodilatory effect,
whereas the reduction in baroreflex gain is most likely the result of disruption of cardiac
control within the central nervous system.

In a closed-loop cardiovascular control system, interactions between the heartbeat interval
(or HR) and BP dynamics can be complex and state-dependent. We have proposed novel
ways to assess their interactions at arbitrarily fine timescales, as well as in the frequency
domain. The statistical study of the linear vs. bilinear cross-spectrum ratio shows greater
nonlinear dynamics within the LF range in the awake baseline condition than in the level-1
propofol concentration when the parasympathetic activity starts to attenuate, suggesting that
the bilinear interactions between the two variables become more active under propofol
anesthesia.

In summary, we have developed a point process model for assessing the baroreflex control
of heart rate during induction of propofol anesthesia using clinical recordings. The
probability point process model used here can be viewed as one specific example within a
more general framework.13, 16 The proposed point process method also enables us to
estimate instantaneous HR, HRV, coherence and cross-bispectrum. All of these statistical
indices may serve as potential indicators for ambulatory monitoring in clinical practice, and
may particularly provide a valuable quantitative assessment of the interaction between
heartbeat dynamics and hemodynamics during general anesthesia. More importantly, these
quantitative indices could be monitored intraoperatively in order to improve drug
administration and reduce the side-effects of anesthetic drugs.

APPENDIX
For clarity of proof of Eq. (11), we assume that inputs u(t) and x(t) are both stationary and
have zero means (in our case, we only model the “de-meaned” RR and BP signals with {ai}
and {bj}). The line of logic is similar to the one that was presented in the literature,42 which
only considered a univariate input. We first decompose the output y(t) into three (two linear
and one bilinear) terms

From the assumption that E[x(t)] = 0 and E[u(t)] = 0, it further follows that

(A.1)

where the expectation operation is averaged on the argument over time.

Next, we compute the cross third-order cumulant statistic between x(t) and y(t) (viz. cross
bicovariance):
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where we have used the fact that if x(t) is zero-mean Gaussian, then the third cumulant

statistic Cxxx(τ1,τ2) is zero, such that . Furthermore, if u(t)
and x(t) are zero-mean jointly Gaussian distributed, and the odd-moment statistic Cxxu(τ1,τ2)
≈ 0 (because of the symmetry of Gaussian distribution), then the following relationship
holds:42, 55

(A.2)

and

(A.3)

In light of Eqs. (A.2) and (A.3), we obtain

Finally, we compute the two-dimensional Fourier transform of Cxxy(τ1,τ2) to obtain the
cross-bispectrum xxy(f1,f2):

(A.4)

which then completes the proof of Eq. (11).

Acknowledgments
The research was supported by NIH Grants R01-HL084502 (R.B.), K25-NS05758 (P.L.P.), DP2-OD006454
(P.L.P.), T32NS048005 (G.H.), DP1-OD003646 (E.N.B.), and R01-DA015644 (E.N.B.), as well as a CRC UL1
grant RR025758 (P.L.P.). The authors thank L. Citi, K. Habeeb, R. Merhar, A. Salazar and C. Tavares for
assistance in collecting and preprocessing the data used in our experiments. We also thank the valuable comments
from three reviewers that help to improve the manuscript. Preliminary results of this work have been reported in
Proceedings of IEEE ICASSP’09, Taiwan.

Chen et al. Page 15

Ann Biomed Eng. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



REFERENCES
1. Task Force of the European Society of Cardiology and the North American Society of Pacing and

Electrophysiology. Heart rate variability. Circulation 1996;93:1043–1065. [PubMed: 8598068]
2. Barbieri R, Waldmann RA, Di Virgilio V, Triedman JK, Bianchi AM, Cerutti S, Saul JP.

Continuous quantification of baroreflex and respiratory control of heart rate by use of bivarate
autoregressive techniques. Ann. Noninvasive Electrocardiology 1996;3:264–277.

3. Barbieri R, Parati G, Saul JP. Closed- versus open-loop assessment of heart rate baroreflex. IEEE
Eng. Med. Biol 2001;20:33–42.

4. Barbieri R, Matten EC, Alabi AA, Brown EN. A point-process model of human heartbeat intervals:
new definitions of heart rate and heart rate variability. Am J. Physiol. Heart Cicr. Physiol
2005;288:H424–H435.

5. Barbieri R, Brown EN. Analysis of heart beat dynamics by point process adaptive filtering. IEEE
Trans. Biomed. Eng 2006;53:4–12. [PubMed: 16402597]

6. Baselli G, Cerutti S, Civardi S, Malliani A, Pagani M. Cardiovascular variability signals: towards
the identification of a closed-loop model of the neural control mechanisms. IEEE Trans. Biomed.
Eng 1988;35:1033–1046. [PubMed: 3220497]

7. Baselli G, Porta M, Rimoldi O, Pagani M, Cerutti S. Spectral decomposition in multichannel
recordings based on multivariate parametric identification. IEEE Trans. Biomed. Eng
1997;44:1092–1101. [PubMed: 9353988]

8. Betzel J, Mukkamala R, Baselli G, Chon KH. Modeling and disentangling physiological
mechanisms: Linear and nonlinear identification techniques for analysis of cardiovascular
regulation. Philo. Trans. R. Soc. A 2009;367:1377–1391.

9. Bristow JD, Prys-Roberts C, Fisher A, Pickering TG, Sleight P. Effects of anesthesia on baroreflex
control of heart rate in man. Anesthesiology 1969;31:422–428. [PubMed: 5345293]

10. Brown, EN.; Barbieri, R.; Eden, UT.; Frank, LM. Likelihood methods for neural data analysis. In:
Feng, J., editor. Computational Neuroscience: A Comprehensive Approach. CRC Press; 2003. p.
253-286.

11. Carlson JT, Hedner JA, Sellgren J, Elam M, Wallin BG. Depressed baroreflex sensitivity in
patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med 1996;154:1490–1496.
[PubMed: 8912770]

12. Carter JA, Clarke TNS, Prys-Roberts C, Spelina KR. Restoration of baroreflex control of heart rate
during recovery from anaesthesia. Br. J. Anaesth 1986;58:415–421. [PubMed: 3954922]

13. Chen Z, Brown EN, Barbieri R. A study of probabilistic models for characterizing human heart
beat dynamics in autonomic blockade control. Proc. IEEE ICASSP 2008:481–484.

14. Chen Z, Brown EN, Barbieri R. A point process approach to assess dynamic baroreflex gain. Proc.
Computers in Cardiology 2008:805–808.

15. Chen Z, Purdon PL, Pierce ET, Harrell G, Brown EN, Barbieri R. Assessment of baroreflex control
of heart rate during general anesthesia using a point process method. Proc. IEEE ICASSP
2009:333–336.

16. Chen, Z.; Brown, EN.; Barbieri, R. A unified point process framework for assessing heartbeat
dynamics and cardiovascular control; Proc. IEEE 35th Northeast Bioengineering Conference;
2009. p. 1-2.

17. Chen Z, Brown EN, Barbieri R. Assessment of autonomic control and respiratory sinus arrhythmia
using point process models of human heart beat dynamics. IEEE Trans. Biomed. Eng
2009;56:1791–1802. [PubMed: 19272971]

18. Chen Z, Brown EN, Barbieri R. Characterizing nonlinear heartbeat dynamics within a point
process framework. IEEE Trans. Biomed. Eng 2010;57:1335–1347. [PubMed: 20172783]

19. Chon KH, Mullen TJ, Cohen RJ. A dual-input nonlinear system analysis of autonomic modulation
of heart rate. IEEE Trans. Biomed. Eng 1995;43:530–540. [PubMed: 8849465]

20. Chung OY, Bruehl S, Diedrich L, Diedrich A, Chont M, Robertson D. Baroreflex sensitivity
associated hypoalgesia in healthy states is altered by chronic pain. Pain 2008;138:87–97.
[PubMed: 18164819]

Chen et al. Page 16

Ann Biomed Eng. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



21. Clayton RH, Bowman AJ, Murray A. Measurement of baroreflex gain from heart rate and blood
pressure spectra. Physiol. Meas 1995;16:131–139. [PubMed: 7663368]

22. Cullen PM, Turtle M, Prys-Roberts C, Way WL, Dye J. Effect of propofol anesthesia on baroreflex
activity in humans. Anesth. Analg 1987;66:115–120.

23. De Boer RW, Karemaker JM, Strackee J. Relationships between short-term blood-pressure
fluctuations and heart-rate variability in resting subjects: a spectral analysis approach. Med. Biol.
Eng. Comput 1985;23:352–358. [PubMed: 4046655]

24. De Ceccoa M, Angrillib A. Measurement of human baroreceptor reflex sensitivity by means of
parametric identification. Measurement 1998;24:187–196.

25. Eckberg DL. Nonlinearities of the human carotid baroreceptor-cardiac reflex. Circ. Res
1980;47:208–216. [PubMed: 7397953]

26. Eckberg DL, Harkins SW, Fritsch JM, Musgrave GE, Gardner DF. Baroreflex control of plasma
norepinephrine and heart period in healthy subjects and diabetic patients. J. Clin. Invest
1986;78:366–374. [PubMed: 3734097]

27. Eckberg DL. Arterial baroreflexes and cardiovascular modeling. Cardiovasc. Eng 2008;8:5–13.
[PubMed: 18080759]

28. Eden UT, Frank LM, Solo V, Brown EN. Dynamic analyses of neural encoding by point process
adaptive filtering. Neural Comput 2004;16:971–998. [PubMed: 15070506]

29. Faes L, Porta A, Cucino R, Cerutti S, Antolini R, Nollo G. Causal transfer function analysis to
describe closed loop interactions between cardiovascular and cardiorespiratory variability signals.
Biol. Cybern 2004;90:390–399. [PubMed: 15278463]

30. Faes L, Nollo G, Chon KH. Assessment of Granger causality by nonlinear model identification:
application to short-term cardiovascular variability. Ann. Biomed. Eng 2007;36:381–395.
[PubMed: 18228143]

31. Feld J, Hoffman W, Paisansathan C, Park H, Ananda RC. Autonomic activity during
dexmedetomidine or fentanyl infusion with desflurane anesthesia. J. Clinical Anesthesia
2003;19:30–36.

32. Fietze I, Romberg D, Glos M, Endres S, Theres H, Witt C, Somers VK. Effects of positive-
pressure ventilation on the spontaneous baroreflex in healthy subjects. J. Appl. Physiol
2004;96:1155–1160. [PubMed: 14607849]

33. Guyton, AC. Textbook of Medical Physiology. 8th ed.. Philadelphia, PA: Harcourt Brace; 1991.
34. Haykin, S. Adaptive Filter Theory. 4th ed.. NJ: Prentice Hall; 2001.
35. Hughson RL, Quintin L, Annat G, Yamamoto Y, Gharib C. Spontaneous baroreflex by sequence

and power spectral methods in humans. Clin. Physiol 1993;13:663–676. [PubMed: 8119060]
36. Jo JA, Blasi A, Valladares EM, Juarez R, Baydur A, Khoo MCK. A nonlinear model of cardiac

autonomic control in obstructive sleep apnea syndrome. Ann. Biomed. Eng 2007;35:1425–1443.
[PubMed: 17415661]

37. Lu S, Ju KH, Chon KH. A new algorithm for linear and nonlinear ARMA model parameter
estimation using afne geometry. IEEE Trans. Biomed. Eng 2001;48(10):1116–1124. [PubMed:
11585035]

38. Mainardi LT, Bianchi AM, Furlan R, Piazza S, Barbieri R, de Virgilio V, Malliani A, Cerutti S.
Multivariate time-variant identification of cardiovascular variability signals: a beat-to-beat spectral
parameter estimation in vasovagal syncope. IEEE Trans. Biomed. Eng 1997;44(10):978–988.
[PubMed: 9311167]

39. Mainardi LT. On the quantification of heart rate variability spectral parameters using time-
frequency and time-varying methods. Phil. Trans. R. Soc. A 2009;367:255–275. [PubMed:
18936017]

40. Marmarelis, VZ. Nonlinear Dynamic Modeling of Physiological Systems. New York: New York;
2004.

41. Nagasaki G, Tanaka M, Nishikawa T. The recovery profile of baroreflex control of heart rate after
isoflurane or sevoflurane anesthesia in humans. Anesth. Analg 2001;93:1127–1131. [PubMed:
11682380]

42. Nikias, C.; Petropulu, AP. Higher Order Spectra Analysis: A Non-Linear Signal Processing
Framework. Prentice Hall; 1993.

Chen et al. Page 17

Ann Biomed Eng. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



43. Nollo G, Porta A, Faes L, Del Greco M, Disertori M, Ravelli F. Causal linear parametric model for
baroreflex gain assessment in patients with recent myocardial infarction. Am. J. Physiol. Heart
Circ. Physiol 2001;280:H1830–H1839. [PubMed: 11247798]

44. Parati G, DiRienzo M, Mancia G. Dynamic modulation of baroreflex sensitivity in health and
disease. Ann. NY Acad. Sci 2001;940:469–487. [PubMed: 11458702]

45. Peng C-K, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and
crossover phenomena in nonstationary heartbeat time series. Chaos 1995;5:82–87. [PubMed:
11538314]

46. Pinna GD, Maestri R. New criteria for estimating baroreflex sensitivity using the transfer function
method. J. Med. Biol. Eng. Comput 2001;40:79–84.

47. Pinna GD. Assessing baroreflex sensitivity by the transfer function method: what are we really
measuring? J. Appl. Physiol 2007;102:1310–1311. [PubMed: 17218433]

48. Poon C-S, Merrill CK. Decrease of cardiac chaos in congestive heart failure. Nature
1997;389:492–495. [PubMed: 9333237]

49. Porta A, Aletti F, Vallais F, Baselli G. Multimodal signal processing for the analysis of
cardiovascular variability. Phil. Trans. R. Soc. A 2009;367:391–409. [PubMed: 18940775]

50. Porta A, Furlan R, Rimoldi O, Pagani M, Malliani A, van de Borne P. Quantifying the strength of
linear causal coupling in closed loop interacting cardiovascular variability signals. Biol. Cybern
2002;86:241–251. [PubMed: 12068789]

51. Purdon PL, Pierce ET, Bonmassar G, Walsh J, Harrell G, Kwo J, Deschler D, Barlow M, Merhar
RC, Lamus C, Mullaly CM, Sullivan M, Maginnis S, Skoniecki D, Higgins H, Brown EN.
Simultaneous electroencephalography and functional magnetic resonance imaging of general
anesthesia. Ann. NY Acad. Sci 2009;1157:61–70. [PubMed: 19351356]

52. Peden CJ, Cloote AH, Stratford N, Prys-Roberts C. The effect of intravenous dexmedetomidine
premedication on the dose requirement of propofol to induce loss of consciousness in patients
receiving alfentanil. Anaesthesia 2001;56:408–413. [PubMed: 11350323]

53. Sato M, Tanaka M, Umehara S, Nishikawa T. Baroreflex control of heart rate during and after
propofol infusion in humans. Br. J. Anaesth 2005;94:577–581. [PubMed: 15722386]

54. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the
circulation: unique insights into cardiovascular regulation. Am. J. Physiol. Heart. Circ. Physiol
1991;261:H1231–H1245.

55. Schetzen, M. The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley; 1980.
56. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The

influence of method of administration and covariates on the pharmacokinetics of propofol in adult
volunteers. Anesthesiology 1998;88:1170–1182. [PubMed: 9605675]

57. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ. The
influence of age on propofol pharmacodynamics. Anesthesiology 1999;89:67–72.

58. Sellgren J, Ejnell H, Elam M, Pontén J, Wallin BG. Sympathetic muscle nerve activity, peripheral
blood flows, and baroreceptor reflexes in humans during propofol anesthesia and surgery.
Anesthesiology 1994;80:534–544. [PubMed: 8141450]

59. Shafer A, Doze VA, Shafer SL, White PF. Pharmacokinetics and pharmacodynamics of propofol
infusions during general anesthesia. Anesthesiology 1988;69:348–356. [PubMed: 3261954]

60. Tanaka M, Nagaski G, Nishikawa T. Moderate hypothermia depresses arterial baroreflex control of
heart rate during, and delays it recovery after, general anesthesia in humans. Anesthesiol
2001;95:51–55.

61. Tanaka M, Nishikawa T. The concentration-dependent effects of general anesthesia on
spontaneous baroreflex indices and their correlations with pharmacological gains. Anesth. Analg
2005;100:1325–1332. [PubMed: 15845678]

62. Tsoulkas V, Koukoulas P, Kalouptsidis N. Identification of input output bilinear systems using
cumulants. IEEE Trans. Signal Process 2001;49:2753–2761.

63. Xiao X, Mullen TJ, Mukkamala R. System identication: a multi-signal approach for probing neural
cardiovascular regulation. Physiol. Meas 2005;26:R41–R71. [PubMed: 15798289]

Chen et al. Page 18

Ann Biomed Eng. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



64. Wang H, Ju K, Chon KH. Closed-loop nonlinear system identification via the vector optimal
parameter search algorithm: Application to heart rate baroreflex control. Med. Eng. & Phy
2007;29:505–515.

65. Zhao H, Lu S, Zou R, Ju K, Chon KH. Estimation of time-varying coherence function using time-
varying transfer functions. Ann. Biomed. Eng 2005;33:1582–1594. [PubMed: 16341925]

66. Zhao H, Cupples WA, Ju K, Chon KH. Time-varying causal coherence function and its application
to renal blood pressure and blood flow data. IEEE Trans. Biomed. Eng 2007;54:2142–2150.
[PubMed: 18075030]

67. Zou R, Wang H, Chon KH. A robust time-varying identification algorithm using basis functions.
Ann. Biomed. Eng 2003;31:840–853. [PubMed: 12971616]

Chen et al. Page 19

Ann Biomed Eng. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A simplified diagram of closed-loop model of cardiovascular system. The beat-to-beat R-R
interval is modulated by the blood pressure (BP) through the feedback baroreflex loop. The
dashed box is the closed-loop model we aim to identify. In addition, the respiratory (RP)
input also modulates RR through respiratory sinus arrhythmia (RSA) and modulates BP
through mechanical influences.
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Figure 2.
(a) Simulated trace of the R-R intervals. (b) Simulated trace of the BP signal. (c) The BRS
estimate computed from the adaptive point process filter (among one of 20 simulations) at
both LF (solid line) and HF (dashed line) range. (d) Comparison of the averaged BRS (at LF
range) trace (from 20 Monte Carlo runs) between the point process filter (black) and RLS
filter (green) during the period of 150–450 ms.
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Figure 3.
The raw R-R intervals and systolic blood pressure (SBP) recordings at baseline and level-1
drug concentration for selected five subjects. Note that during administration of propofol
anesthesia, in each epoch, there were moments where SBP recordings were corrupted by
artifacts when physiologists wanted to collected blood samples for measuring the
concentration of propofol. In practice, we have excluded those portions of recordings in
analysis.
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Figure 4.
(a) Histogram of the R-R intervals from one recording epoch. (b) Maximum likelihood fitted
Gaussian and inverse Gaussian probability density functions (pdfs) for R-R intervals. Note
that Gaussian pdf is symmetric, whereas the inverse Gaussian pdf is slight skewed, but their
shapes are very close, except that the inverse Gaussian pdf has a longer tail, which is better
in modeling data outlier. (c) Histogram of the recorded SBP data from the same epoch. (d,e)
Q-Q plots for the Gaussian and inverse Gaussian distributions, respectively. (f) KS plot for
the inverse Gaussian distribution (dashed lines mark the 95% confidence intervals).
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Figure 5.
A snapshot of estimated dynamic statistical indices ranging from the baseline to level-1
(Subject 1). The dashed line marks the start of anesthesia at level-1 drug concentration, and
the blank region represents the transient period after the baseline (where SBP measures are
corrupted by artifact). We used the parameter estimate from the end of baseline as the initial
value for the time where the blank region ends. As seen, the baroreflex gain (LF) dropped
right after the administration of propofol anesthesia.
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Figure 6.
(a) Box plot of relative BRS ratio (level-1/level-0) values of 11 subjects at the LF and HF
ranges. (b) Scatter plot of relative BRS ratio vs. relative SBP ratio (level-1/level-0).
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Figure 7.
Box plots of coherence and ρ statistics between level-0 and level-1 anesthetic drug
concentration levels.
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Figure 8.
For Subject 1, the comparison of the linear coherence between RR and SBP series during the
wakefulness (level-0) baseline (top two panels) and during the level-1 of anesthetic drug
concentration (bottom two panels). The coherence amplitude is color coded, with warm/cold
color representing a high/low coherence value. The relative phase relationship is shown as
arrows (with in-phase pointing right, anti-phase pointing left, and SBP leading RR series by
90° pointing straight up). The mean coherence curve is also plotted under the coherence
map.
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