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Abstract
Coherence analysis characterizes frequency-dependent covariance between signals, and is useful
for multivariate oscillatory data often encountered in neuroscience. The global coherence provides
a summary of coherent behavior in high-dimensional multivariate data by quantifying the
concentration of variance in the first mode of an eigenvalue decomposition of the cross-spectral
matrix. Practical application of this useful method is sensitive to noise, and can confound coherent
activity in disparate neural populations or spatial locations that have a similar frequency structure.
In this paper we describe two methodological enhancements to the global coherence procedure
that increase robustness of the technique to noise, and that allow characterization of how power
within specific coherent modes change through time.

I. INTRODUCTION
Coherence analysis characterizes frequency-dependent covariance between signals, and is
useful for multivariate oscillatory data often encountered in neuroscience. In high-
dimensional data sets, such as high-density electroencephalogram (EEG), the large number
of channels, ranging from 64 to 256, makes pairwise coherence analysis cumbersome in
practice. Mitra and Bokil have proposed a ”global coherence” method for summarizing
coherence relationships within large multivariate data sets [1]. This procedure consists of an
eigenvalue decomposition of the cross-spectral matrix, producing a summary statistic that
quantifies the extent to which variance at a particular frequency can be concentrated within
the first mode of the decomposition. Recently, this method has been applied to analyze EEG
data recorded during general anesthesia [2]. A number of challenges exist in the practical
application of this useful procedure. Noise from subject movement or muscle activity, which
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can introduce large-amplitude transient signals, can pose problems by introducing broad-
band artifacts covering a range of frequencies of interest. This can occur frequently in
neuroscience experiments, and in clinical settings such as sleep laboratories or the operating
room. If temporal averaging is required to estimate the cross-spectral matrix, relatively brief
instances of noise can contaminate global coherence estimates from a much longer segment
of otherwise artifact-free data. These noisy segments can be removed manually, but doing so
can be tedious and subjective, and is unsuitable for real-time clinical monitoring
applications. For time-varying signals, such as those recorded during sleep or induction of
general anesthesia, coherent oscillations within a frequency band of interest may adopt
different spatial distributions, which may be difficult to appreciate from examining the
global coherence summary statistic alone.

In this paper we describe two methodological enhancements to the global coherence
procedure that increase robustness of the technique to noise, and that allow characterization
of how activity within specific coherent spatial modes change through time. We demonstrate
the feasibility of this approach by analyzing high-density EEG recorded during induction of
general anesthesia.

II. METHODS
A. Global Coherence

The global coherence quantifies the concentration of variance in the first mode of an
eigenvalue decomposition of the cross spectral matrix, computed using a singular value
decomposition [1]:

(1)

where S(k) (f) is the k-th largest entry of the singular value matrix S (f) = diag (S(1) (f), S(2)
(f), …, S(N) (f)), which is unitarily similar to the cross spectral power density matrix P (f)
and satisfies

(2)

for some unitary matrix U (f) at frequency f.

In [2], the cross spectral matrix is computed by averaging cross-spectral estimates over an
ensemble of neighboring windows:

(3)

where P (f, t) is the outer product of the tapered Fourier transform of a data window with
itself, and J represents the number of windows in the interval [t − Δt, t]. A single discrete
prolate spheroidal (Slepian) sequence is used for tapering. Estimates are allowed to vary in
time by sliding the ensemble of windows in a non-overlapping fashion.

B. Robust Estimation of the Cross Spectral Matrix
Estimates of the cross-spectral matrix as described above are sensitive to noise. To make
cross-spectral estimation more robust, we use the median in place of the mean. The median
is a robust estimator of centrality, and is much less sensitive to outliers than the mean.
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(4)

(5)

is the set of Slepian tapered cross spectral density matrices. Here the median is computed
elementwise and also separately over the real and imaginary components. Estimates are
allowed to vary in time by sliding in single-window increments. This overlapping window
arrangement allows the cross-spectral and global coherence estimates to track dynamics
more rapidly than non-overlapping windows.

C. Projection Onto Global Coherent Spatial Modes
Coherent oscillations within a frequency band of interest may adopt different spatial
distributions, which may be difficult to appreciate from the global coherence summary
statistic alone. To analyze how power within a specific coherent spatial mode varies as a
function of time, we can compute the variance of the projection onto that mode. In
particular, we can take a coherent spatial mode estimated from data at a particular moment
in time using the eigenvalue decomposition in (2), and apply the projection over the full data
record to see how the power within that mode changes in time throughout the course of the
experiment.

(6)

Normalizing  by the total power at frequency f and time t, we obtain a spatial
mode projection power ratio:

(7)

D. EEG Recordings During General Anesthesia
We induced general anesthesia in normal volunteers with the approval of the Human
Research Committee at the Massachusetts General Hospital, and followed all hospital safety
regulations for administration of general anesthesia. We show data from one subject to
illustrate application of the robust estimation methods described above. For the anesthetic
induction, we increased the effect-site concentration in step-wise levels of 0, 1, 2, 3, 4, and 5
μg/ml every 14 minutes using a computer controlled infusion [3], [4]. The subject listened to
a series of pre-recorded auditory stimuli consisting of their name, affectively-neutral words,
or a train of 40 and 84 Hz clicks, presented once every 4 seconds. Subjects were instructed
to press a button to differentiate between these sounds. We used the loss of button responses
as an indicator of loss of consciousness (LOC). We recorded 64-channel EEG continuously
during this time (BrainAmp MRPlus, BrainProducts, GMBH). Prior to EEG recording, we
acquired structural MRI for each subject and digitized scalp electrode positions (Polhemus
Fastrack 3D). Prior to data analysis, we co-registered the electrode positions with MRI-
based scalp surface reconstructions obtained with Freesurfer [5], and re-montaged EEG
signals to a Laplacian reference, using distances along the scalp surface to weigh
neighboring electrode contributions.

For the average-based global coherence procedure described in II-A, we used ten 2-second
data windows to estimate the cross-spectral matrix, tapering with a single Slepian taper with
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time-frequency bandwidth product of NW = 2. For the median-based global coherence
estimate described in II-B, we again used 10 2-second data windows, but used the first 3
Slepian tapers to construct the sample from which to calculate the median.

III. RESULTS AND DISCUSSIONS
In Figure 1 we show the global coherence calculated in three different ways: using the
original method described in [2] (top), using that same method but with sliding overlapping
windows in time (middle), and using the robust median estimates of the cross-spectral
matrix (bottom). Loss of consciousness (loss of response to auditory stimuli) occurs at
approximately 65 minutes. We observe that the original global coherence calculation is
highly sensitive to noise, taking the form of broad-band artifacts (red vertical lines, Figure 1,
top). Application of a sliding window appears to improve temporal resolution (Figure 1,
middle), but noise contamination remains. Application of the robust cross-spectral median
estimate removes the majority of the noise artifacts (Figure 1, bottom).

From this analysis we observe a high degree of global coherence within the alpha band (8–
12 Hz). When consciousness is lost, the global coherence appears to shift upwards in
frequency by a small amount (~1 Hz). To analyze the spatial distributions and dynamics of
these coherent modes, we apply the spatial projection described in section II-C above, first
using the coherent spatial mode estimated from the baseline period (Figure 2, middle), and
then using one estimated from the unconscious period (Figure 2, bottom). The coherent
spatial mode estimated from the baseline period shows a strong posterior dominance in the
alpha band, consistent with the normal alpha rhythm. The spatial mode coming from the
unconscious period, however, shows a strong frontal distribution in the alpha band. If we
examine the variance within this mode over the full data record, we observe that power in
the posterior mode decreases as the experiment proceeds and the level of propofol is
increased (Figure 2, top left), whereas the frontal mode has little power during the conscious
period, but turns on after loss of consciousness (Figure 2, top right).

In this paper we focused on methods for robust estimation, but did not discuss statistical
inference, which will be addressed in future work. Although the cross spectral matrices
follow a multivariate Chi-squared distribution (Wishart), the global coherence does not have
a closed-form distribution, because the singular value decomposition lacks a fixed functional
form. Markov Chain Monte Carlo (MCMC) methods may provide a means of calculating an
empirical distribution for the global coherence which can be used to calculate confidence
intervals or for hypothesis testing.

In additional to coherence analysis, results with other indicators of the state of consciousness
for this experiment can be found in [6] and [7].

IV. CONCLUSIONS
The global coherence is a useful method for summarizing patterns of frequency-dependent
co-variation in multivariate time series. In this paper we have developed a robust estimation
method that improves the performance of this procedure in noisy data that are frequently
encountered in neuroscience experiments, and in clinical settings such as sleep laboratories
or the operating room. Furthermore, we have introduced a simple projection procedure that
can be used to assess the dynamics of specific oscillatory modes discovered using global
coherence analysis. We have illustrated the application of this method on EEG data recorded
during induction of general anesthesia, but the method is applicable to a wide variety of
neuroscience applications featuring multivariate neurophysiological recordings.
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Fig. 1.
Global coherence estimates using time-averaged non-overlapping windows (top), time-
averaged overlapping windows (middle), and robust median estimates of the cross-spectral
matrix (bottom) during induction of general anesthesia. The y-axis frequency range goes
from 0 to 50 Hz, and the time axis covers approximately 90 minutes as the concentration of
propofol is increased from 0 to 5 μg/ml effect site target concentrations in 1 μg/ml
increments. The approximate time point for loss of consciousness is denoted by the black
arrow.
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Fig. 2.
Spatial distribution of the alpha-band (8–12 Hz) coherent modes and power ratio of spatial
mode projection. The spatial distribution, an interpolation of the modulus of the 64 complex
values in the projection vectors U(1) ( , ) which corresponds to 64 EEG electrode
positions, is estimated during the baseline period (top left) and unconscious period (top
right), with the anterior of the scalp at the top of the page, and the posterior at the bottom.
The power ratio within these modes as a function of time is shown below.
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