1,299 research outputs found

    Variation in metapopulation dynamics of a wetland mammal: The effect of hydrology.

    Get PDF
    Key factors affecting metapopulation dynamics of animals include patch size, isolation, and patch quality. For wetland-associated species, hydrology can affect patch availability, connectivity, and potentially habitat quality; and therefore drive metapopulation dynamics. Wetlands occurring on natural river floodplains typically have more dynamic hydrology than anthropogenic wetlands. Our overall objective was to assess the multiyear spatial and temporal variation in occupancy and turnover rates of a semi-aquatic small mammal at two hydrologically distinct wetland complexes. We live-trapped marsh rice rats (Oryzomys palustris) for 3 yr and \u3e50 000 trap nights at nine wetland patches on the Mississippi River floodplain and 14 patches at a reclaimed surface mine in southern Illinois. We used dynamic occupancy modeling to estimate initial occupancy, detection, colonization, and extinction rates at each complex. Catch per unit effort (rice rats captured/1000 trap nights) was markedly higher at the floodplain site (28.1) than the mining site (8.1). We found no evidence that temperature, rainfall, or trapping effort affected detection probability. Probability of initial occupancy was similar between sites and positively related to patch size. Patch colonization probability at both sites was related negatively to total rainfall 3 weeks prior to trapping, and varied across years differently at each site. We found interacting effects of site and rainfall on extinction probability: extinction increased with total rainfall 3 months prior to trapping but markedly more at the floodplain site than at the mining site. These site-specific patterns of colonization and extinction are consistent with the rice rat metapopulation in the floodplain exhibiting a habitat-tracking dynamic (occupancy dynamics driven by fluctuating quality), whereas the mineland complex behaved more as a classic metapopulation (stochastic colonization & extinction). Our study supports previous work demonstrating metapopulation dynamics in wetland systems being driven by changes in patch quality (via hydrology) rather than solely area and isolation

    Electro-oxidative depolymerisation of technical lignin in water using platinum, nickel oxide hydroxide and graphite electrodes

    Get PDF
    In order to improve the lignin exploitation to added-value bioproducts, a mild chemical conversion route based on electrochemistry was investigated. For the first time, soda lignin Protobind™ 1000 (technical lignin from the pulp & paper industry) was studied by cyclic voltammetry to preliminarily investigate the effect of the main reaction parameters, such as the type of electrode material (platinum, nickel oxide hydroxide, graphite), the pH (12, 13, 14), the scan rate (10, 50, 100, 250 mV s-1), the substrate concentration (2, 20 g L-1) and the oxidation/reduction potential (from -0.8 to +0.8 V). Under the optimal reaction conditions among those tested (NiOOH electrode, pH 14, lignin 20 g L-1, 0.4 V), the electro-oxidative depolymerisation of lignin by electrolysis was performed in a divided cell. The reaction products were identified and quantified by ultra-pressure liquid chromatography coupled with mass spectrometry. The main products were sinapic acid, vanillin, vanillic acid, and acetovanillone. The obtained preliminary results demonstrated the potential feasibility of this innovative electrochemical route for lignin valorisation for the production of bio-aromatic chemicals

    Stimulation of Myofibrillar Protein Synthesis in Hindlimb Suspended Rats by Resistance Exercise and Growth Hormone

    Get PDF
    The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis

    A multimodal imaging workflow for monitoring CAR T cell therapy against solid tumor from whole-body to single-cell level

    Get PDF
    CAR T cell research in solid tumors often lacks spatiotemporal information and therefore, there is a need for a molecular tomography to facilitate high-throughput preclinical monitoring of CAR T cells. Furthermore, a gap exists between macro- and microlevel imaging data to better assess intratumor infiltration of therapeutic cells. We addressed this challenge by combining 3D µComputer tomography bioluminescence tomography (µCT/BLT), light-sheet fluorescence microscopy (LSFM) and cyclic immunofluorescence (IF) staining. Methods: NSG mice with subcutaneous AsPC1 xenograft tumors were treated with EGFR CAR T cell (± IL-2) or control BDCA-2 CAR T cell (± IL-2) (n = 7 each). Therapeutic T cells were genetically modified to co-express the CAR of interest and the luciferase CBR2opt. IL-2 was administered s.c. under the xenograft tumor on days 1, 3, 5 and 7 post-therapy-initiation at a dose of 25,000 IU/mouse. CAR T cell distribution was measured in 2D BLI and 3D µCT/BLT every 3-4 days. On day 6, 4 tumors were excised for cyclic IF where tumor sections were stained with a panel of 25 antibodies. On day 6 and 13, 8 tumors were excised from rhodamine lectin-preinjected mice, permeabilized, stained for CD3 and imaged by LSFM. Results: 3D µCT/BLT revealed that CAR T cells pharmacokinetics is affected by antigen recognition, where CAR T cell tumor accumulation based on target-dependent infiltration was significantly increased in comparison to target-independent infiltration, and spleen accumulation was delayed. LSFM supported these findings and revealed higher T cell accumulation in target-positive groups at day 6, which also infiltrated the tumor deeper. Interestingly, LSFM showed that most CAR T cells accumulate at the tumor periphery and around vessels. Surprisingly, LSFM and cyclic IF revealed that local IL-2 application resulted in early-phase increased proliferation, but long-term overstimulation of CAR T cells, which halted the early added therapeutic effect. Conclusion: Overall, we demonstrated that 3D µCT/BLT is a valuable non-isotope-based technology for whole-body cell therapy monitoring and investigating CAR T cell pharmacokinetics. We also presented combining LSFM and MICS for ex vivo 3D- and 2D-microscopy tissue analysis to assess intratumoral therapeutic cell distribution and status

    Fractional Flow Reserve\u2013Guided Deferred Versus Complete Revascularization in Patients With Diabetes Mellitus

    Get PDF
    To assess the safety and efficacy of deferred versus complete revascularization using a fractional flow reserve (FFR)\u2013guided strategy in patients with diabetes mellitus (DM), we analyzed all DM patients who underwent FFR-guided revascularization from January 1, 2010, to December 12, 2013. Patients were divided into 2 groups: those with 651 remaining FFR-negative (>0.80) medically treated lesions [FFR( 12)MT] and those with only FFR-positive lesions ( 640.80) who underwent complete revascularization [FFR(+)CR] and were followed until July 1, 2015. The primary end point was the incidence of major adverse cardiovascular events (MACE), a composite of death, myocardial infarction (MI), target lesion (FFR assessed) revascularization, and rehospitalization for acute coronary syndrome. A total of 294 patients, 205 (69.7%) versus 89 (30.3%) in FFR( 12)MT and FFR(+)CR, respectively, were analyzed. At a mean follow-up of 32.6 \ub1 18.1\ua0months, FFR( 12)MT was associated with higher MACE rate 44.0% versus 26.6% (log-rank p\ua0=\ua00.02, Cox regression\u2013adjusted hazard ratio [HR] 2.01, 95% confidence interval [CI] 1.21 to 3.33, p\ua0<0.01), and\ua0driven by both safety and efficacy end points: death/MI (HR 2.02, 95% CI 1.06 to 3.86, p\ua0= 0.03), rehospitalization for acute coronary syndrome (HR 2.06, 95% CI 1.03 to 4.10, p\ua0= 0.04), and target lesion revascularization (HR 3.38, 95% CI 1.19 to 9.64, p\ua0= 0.02). Previous MI was a strong effect modifier within the FFR( 12)MT group (HR 1.98, 95% CI 1.26 to 3.13, p <0.01), whereas this was not the case in the FFR(+)CR group (HR 0.66, 95% CI 0.27 to 1.62, p\ua0= 0.37). Significant interaction for MACE was present between FFR groups and previous MI (p\ua0= 0.03). In conclusion, in patients with DM, particularly those\ua0with previous MI, deferred revascularization is associated with poor medium-term outcomes. Combining FFR with imaging techniques may be required to guide our treatment strategy in these patients with high-risk, fast-progressing atherosclerosis

    NT-proBNP level before primary PCI and risk of poor myocardial reperfusion: Insight from the On-TIME II trial.

    Get PDF
    Background N-terminal fragment of the brain natriuretic peptide prohormone (NT-proBNP), a marker for neurohumoral activation, has been associated with adverse outcome in patients with myocardial infarction. NT-proBNP levels may reflect extensive ischemia and microvascular damage, therefore we investigated the potential association between baseline NTproBNP level and ST-resolution (STR), a marker of myocardial reperfusion, after primary percutaneous coronary intervention (pPCI).Methods we performed a post-hoc analysis of the On-TIME II trial (which randomized ST-elevation myocardial infarction (STEMI) patients to pre-hospital tirofiban administration vs placebo). Patients with measured NT-proBNP before angiography were included. Multivariate logistic-regression analyses was performed to investigate the association between baseline NTproBNP level and STR one hour after pPCI.Results Out of 984 STEMI patients, 918 (93.3%) had NT-proBNP values at baseline. Patients with STR 70% had higher NT-proBNP values compared to patients with complete STR (70%) [Mean +/- SD 375.2 +/- 1021.7 vs 1007.4 +/- 2842.3, Median (IQR) 111.7 (58.4-280.0) vs 168.0 (62.3-601.3), P < .001]. At multivariate logistic regression analysis, independent predictors associated with higher risk of poor myocardial reperfusion (STR < 70%) were: NT-proBNP (OR 1.17, 95%CI 1.041.31, P = .009), diabetes mellitus (OR 1.87, 95%CI 1.14-3.07, P = .013), anterior infarct location (OR 2.74, 95% CI 2.00-3.77, P < .001), time to intervention (OR 1.06, 95%CI 1.01-1.11, P = .021), randomisation to placebo (OR 1.45, 95%CI 1.05-1.99, P = .022).Conclusions In STEMI patients, higher baseline NT-proBNP level was independently associate with higher risk of poor myocardial reper fusion, suppor ting the potential use of NT-proBNP as an early marker for risk stratification of myocardial reperfusion after pPCI in STEMI patients

    US Fish and Wildlife Service 1979 wetland classification: A review

    Get PDF
    In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • …
    corecore