393 research outputs found

    Assessment of ACU Student Behavioral Risk: A Program Evaluation

    Get PDF
    Abilene Christian University has been building their alcohol and other drug (AOD) prevention initiatives over the last decade in tandem with current intervention efforts. Universities across the country, especially faith-based institutions, are engaging in similar pursuits of implementing an effective AOD program to reduce risky drinking behaviors in their student population. Recently, ACU implemented a new online educational prevention training in 2019 called AlcoholEdu for all incoming students. Data from 2019 were secured from the AlcoholEdu of 530 pre and 485 post surveys of incoming freshmen and transfer students. Results suggest educational benefits from AlcoholEdu and reduction in risky drinking behavior in the majority of participants. When compared to the Brief Alcohol Screening and Intervention for College Students (BASICS) program referrals from the same time period, triangulation of data suggests that the current process has identified the incidence of problem drinking on campus. Overall, the research shows that students have benefited from the AlcoholEdu program. However, there is an overarching gap between the university’s zero-tolerance alcohol policy and its harm reduction initiatives. The current approach is lacking a theoretical framework, which results in incongruent zero-tolerance and harm-reduction approaches. Therefore, for ACU as well as other universities, exploring the theoretical framework of university AOD programs for efficacy may be highly beneficia

    Atmospheric, climatic and environmental research

    Get PDF
    Work performed on the three tasks during the report period is summarized. The climate and atmospheric modeling studies included work on climate model development and applications, paleoclimate studies, climate change applications, and SAGE II. Climate applications of Earth and planetary observations included studies on cloud climatology and planetary studies. Studies on the chemistry of the Earth and the environment are briefly described. Publications based on the above research are listed; two of these papers are included in the appendices

    Lunar science prior to Apollo 11

    Get PDF
    Evolutional aspects and geological interpretations in lunar scienc

    CRAF phase 1, a framework to identify coastal hotspots to storm impacts

    Get PDF
    Low-frequency high-impact storms can cause flood and erosion over large coastal areas, which in turn can lead to a significant risk to coastal occupation, producing devastation and immobilising cities and even countries. It is therefore paramount to evaluate risk along the coast at a regional scale through the identification of storm impact hotspots. The Coastal Risk Assessment Framework Phase 1 (CRAF1) is a screening process based on a coastal-index approach that assesses the potential exposure of every kilometre along the coast to previously identified hazards. CRAF1 integrates both hazard (e.g. overwash, erosion) and exposure indicators to create a final Coastal Index (CI). The application of CRAF1 at two contrasting case studies (Ria Formosa, Portugal and the Belgian coast), validated against existing information, demonstrates the utility and reliability of this framework on the identification of hotspots. CRAF1 represents a powerful and useful instrument for coastal managers and/or end-users to identify and rank potential hotspot areas in order to define priorities and support disaster reduction plans

    Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City

    Get PDF
    This paper describes a time-sensitive approach to climate change projections, developed as part of New York City's climate change adaptation process, that has provided decision support to stakeholders from 40 agencies, regional planning associations, and private companies. The approach optimizes production of projections given constraints faced by decision makers as they incorporate climate change into long-term planning and policy. New York City stakeholders, who are well-versed in risk management, helped pre-select the climate variables most likely to impact urban infrastructure, and requested a projection range rather than a single 'most likely' outcome. The climate projections approach is transferable to other regions and consistent with broader efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach uses 16 Global Climate Models (GCMs) and three emissions scenarios to calculate monthly change factors based on 30-year average future time slices relative to a 30- year model baseline. Projecting these model mean changes onto observed station data for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and dangerous heat events. Based on these methods, the current 1-in-10 year coastal flood is projected to occur more than once every 3 years by the end of the century, and heat events are projected to approximately triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term adaptation planning, even though the precise changes in extreme event frequency are highly uncertai

    Erosion risk assessment of active coastal cliffs in temperate environments

    Get PDF
    The potentially negative consequences resulting from cliff recession are a matter of serious concern in many coastal areas worldwide. The assessment of these kind of processes has traditionally been performed by calculating average cliff recession rates and projecting them into the future, without taking into consideration the diverse factors affecting cliff dynamics and stability. In this work a new, practical method is presented to evaluate cliff erosion risk on temperate environments, by analysing the main factors responsible for both the physical and the socioeconomic aspects of erosion, representing cliff loss potential and damage potential respectively. For this purpose an integration of 11 physical variables (such as cliff lithology, beach characteristics or rainfall regime) and 6 socioeconomic variables (such as land use type or population density) is proposed. These variables are weighted and combined into a Hazard Index and an Impact Index, which in turn are merged into a composite Risk Index, where the resulting values are normalized and expressed as a percentage of the maximum theoretical risk. The method is tested and validated by using data about cliff retreat rates and mass movement processes in the coast of Cádiz province (SW Spain). The proposed approach allows the zoning of coastal cliffs according to the risk, hazard and/or impact levels, including the recognition of critical areas where specific intervention strategies should be adopted. It is believed that the method presented in this work is practical and at the same time scientifically valid, without requiring extensive and detailed surveys of the area where it is to be applied. This way, it constitutes an easy to use, valuable tool for decision-making regarding land use planning and management strategies in active coastal cliffs

    Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia

    Get PDF
    We utilize coral microatolls in western Sumatra to document vertical deformation associated with subduction. Microatolls are very sensitive to fluctuations in sea level and thus act as natural tide gauges. They record not only the magnitude of vertical deformation associated with earthquakes (paleoseismic data), but also continuously track the long-term aseismic deformation that occurs during the intervals between earthquakes (paleogeodetic data). This paper focuses on the twentieth century paleogeodetic history of the equatorial region. Our coral paleogeodetic record of the 1935 event reveals a classical example of deformations produced by seismic rupture of a shallow subduction interface. The site closest to the trench rose 90 cm, whereas sites further east sank by as much as 35 cm. Our model reproduces these paleogeodetic data with a 2.3 m slip event on the interface 88 to 125 km from the trench axis. Our coral paleogeodetic data reveal slow submergence during the decades before and after the event in the areas of coseismic emergence. Likewise, interseismic emergence occurred before and after the 1935 event in areas of coseismic submergence. Among the interesting phenomenon we have discovered in the coral record is evidence of a large aseismic slip or “silent event” in 1962, 27 years after the 1935 event. Paleogeodetic deformation rates in the decades before, after, and between the 1935 and 1962 events have varied both temporally and spatially. During the 25 years following the 1935 event, submergence rates were dramatically greater than in prior decades. During the past four decades, however, rates have been lower than in the preceding decades, but are still higher than they were prior to 1935. These paleogeodetic records enable us to model the kinematics of the subduction interface throughout the twentieth century

    Cost Estimates for Flood Resilience and Protection Strategies in New York City

    Get PDF
    In the aftermaths of Hurricanes Irene, in 2011, and Sandy, in 2012, New York City has come to recognize the critical need to better prepare for future storm surges and to anticipate future trends, such as climate change and socio-economic developments. The research presented in this report assesses the costs of six different flood management strategies to anticipate long-term challenges the City will face. The proposed strategies vary from increasing resilience by upgrading building codes and introducing small scale protection measures, to creating green infrastructure as buffer zones and large protective engineering works such as storm surge barriers. The initial investment costs of alternative strategies vary between 11.6and11.6 and 23.8 bn, maximally. We show that a hybrid solution, combining protection of critical infrastructure and resilience measures that can be upgraded over time, is less expensive. However, with increasing risk in the future, storm surge barriers may become cost-effective, as they can provide protection to the largest areas in both New York and New Jersey. © 2013 New York Academy of Sciences

    Adaptation as a potential response to sea-level rise: a genetic basis for salinity tolerance in populations of a coastal marsh fish

    Get PDF
    Relative sea-level rise is resulting in the intrusion of saline waters into marshes historically dominated by fresh water. Saltwater intrusions can potentially affect resident marsh species, especially when storm-related tidal surges cause rapid changes in salinity. We examined the role of historical salinity exposure on the survival of Gambusia affinis from two locations in coastal Louisiana. At each location, we sampled fish populations from fresh, intermediate and brackish marshes. Individuals were then exposed to a salinity of 25‰ and survival time was measured. We found that fish from brackish and intermediate marshes had an increased tolerance to salinity stress relative to fish from freshwater environments. We then tested the descendents of fish from the fresh and brackish marshes, reared for two generation in fresh water, to determine if there was a genetic basis for differential survival. We found that descendents of individuals from brackish marshes showed elevated survivals relative to the descendents of fish with no historical exposure to salinity. The most reasonable mechanism to account for the differences in survival relative to historical exposure is genetic adaptation, suggesting that natural selection may play a role in the responses of resident marsh fishes to future increases in salinity

    Coastline responses to changing storm patterns

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L18404, doi:10.1029/2006GL027445.Researchers and coastal managers are pondering how accelerated sea-level rise and possibly intensified storms will affect shorelines. These issues are most often investigated in a cross-shore profile framework, fostering the implicit assumption that coastline responses will be approximately uniform in the alongshore direction. However, experiments with a recently developed numerical model of coastline change on a large spatial domain suggest that the shoreline responses to climate change could be highly variable. As storm and wave climates change, large-scale coastline shapes are likely to shift—causing areas of greatly accelerated coastal erosion to alternate with areas of considerable shoreline accretion. On complex-shaped coastlines, including cuspate-cape and spit coastlines, the alongshore variation in shoreline retreat rates could be an order of magnitude higher than the baseline retreat rate expected from sea-level rise alone.The Andrew W. Mellon Foundation, the National Science Foundation Biocomplexity Program, and the Duke University Center on Global Change supported this work
    corecore