37 research outputs found

    A study of the spatial scales of discrete polar auroral arcs

    Get PDF
    Recent theoretical works have dealt with the identification and evaluation of the physical processes that determine the characteristic scale sizes of discrete auroral arcs. It is broadly acknowledged that a characteristic spatial width of approximately 100 km (at ionospheric heights) results naturally from the ionospheric mapping of the high-altitude magnetospheric convection electric field. However, recent analysis of the spatial power spectral distributions of electric and magnetic field variations has revealed structure at much smaller spatial scales. In this analysis, precipitating auroral electron data from the J-package sensor on the Defense Meteorological Satellite Program satellite is used to study the spatial scale sizes and size distributions of polar auroral arcs. A monotonically decreasing inverse-wavelength spectrum with a slope near unity is common, with no strictly preferred scale sizes, although the scale spectrum does flatten at scales larger than approximately 100 to 200 km. Typical observed widths of the auroral arcs tend to be much smaller than the resistive scale length, and the observed widths do not have a strong dependence on local ionospheric parameters

    An expert system for diagnosing environmentally induced spacecraft anomalies

    Get PDF
    A new rule-based, machine independent analytical tool was designed for diagnosing spacecraft anomalies using an expert system. Expert systems provide an effective method for saving knowledge, allow computers to sift through large amounts of data pinpointing significant parts, and most importantly, use heuristics in addition to algorithms, which allow approximate reasoning and inference and the ability to attack problems not rigidly defined. The knowledge base consists of over two-hundred (200) rules and provides links to historical and environmental databases. The environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. The use of heuristics frees the user from searching through large amounts of irrelevant information and allows the user to input partial information (varying degrees of confidence in an answer) or 'unknown' to any question. The modularity of the expert system allows for easy updates and modifications. It not only provides scientists with needed risk analysis and confidence not found in algorithmic programs, but is also an effective learning tool, and the window implementation makes it very easy to use. The system currently runs on a Micro VAX II at Goddard Space Flight Center (GSFC). The inference engine used is NASA's C Language Integrated Production System (CLIPS)

    An on-line expert system for diagnosing environmentally induced spacecraft anomalies using CLIPS

    Get PDF
    A new rule-based, expert system for diagnosing spacecraft anomalies is under development. The knowledge base consists of over two-hundred rules and provide links to historical and environmental databases. Environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. The use of heuristics frees the user from searching through large amounts of irrelevant information (varying degrees of confidence in an answer) or 'unknown' to any question. The expert system not only provides scientists with needed risk analysis and confidence estimates not available in standard numerical models or databases, but it is also an effective learning tool. In addition, the architecture of the expert system allows easy additions to the knowledge base and the database. For example, new frames concerning orbital debris and ionospheric scintillation are being considered. The system currently runs on a MicroVAX and uses the C Language Integrated Production System (CLIPS)

    Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    Get PDF
    Guiding-center simulations of stormtime transport of ring-current and radiation-belt ions having first adiabatic invariants mu is approximately greater than 15 MeV/G (E is approximately greater than 165 keV at L is approximately 3) are surprisingly well described (typically within a factor of approximately less than 4) by the quasilinear theory of radial diffusion. This holds even for the case of an individual model storm characterized by substorm-associated impulses in the convection electric field, provided that the actual spectrum of the electric field is incorporated in the quasilinear theory. Correction of the quasilinear diffusion coefficient D(sub LL)(sup ql) for drift-resonance broadening (so as to define D(sub LL)(sup ql)) reduced the typical discrepancy with the diffusion coefficients D(sub LL)(sup sim) deduced from guiding-center simulations of representative-particle trajectories to a factor of approximately 3. The typical discrepancy was reduced to a factor of approximately 1.4 by averaging D(sub LL)(sup sim), D(sub LL)(sup ql), and D(sub LL)(sup rb) over an ensemble of model storms characterized by different (but statistically equivalent) sets of substorm-onset times

    Diagnosing anomalies of spacecraft for space maintenance and servicing

    Get PDF
    Very often servicing of satellites is necessary to replace components which are responsible for anomalous behavior of satellite operations due to adverse interactions with the natural space environment. A major difficulty with this diagnosis is that those responsible for diagnosing these anomalies do not have the tools to assess the role of the space environment causing the anomaly. To address this issue, we have under development a new rule-based, expert system for diagnosing spacecraft anomalies. The knowledge base consists of over two-hundred rules and provides links to historical and environmental databases. Environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. When the user selects the novice mode, the system automatically gives detailed explanations and descriptions of terms and reasoning as the session progresses, in a sense teaching the user. As such it is an effective tutoring tool. The use of heuristics frees the user from searching through large amounts of irrelevant information and allows the user to input partial information (varying degrees of confidence in an answer) or 'unknown' to any question. The system is available on-line and uses C Language Integrated Production System (CLIPS), an expert shell developed by the NASA Johnson Space Center AI Laboratory in Houston

    An expert system for diagnosing anomalies of spacecraft

    Get PDF
    Although the analysis of anomalous behavior of satellites is difficult because it is a very complex process, it is important to be able to make an accurate assessment in a timely manner when the anomaly is observed. Spacecraft operators may have to take corrective action or to 'safe' the spacecraft; space-environment forecasters may have to assess the environmental situation and issue warnings and alerts regarding hazardous conditions, and scientists and engineers may want to gain knowledge for future designs to mitigate the problems. Anomalies can be hardware problems, software errors, environmentally induced, or even the cause of workmanship. Spacecraft anomalies attributable to electrostatic discharges have been known to cause command errors. A goal is to develop an automated system based on this concept to reduce the number of personnel required to operate large programs or missions such as Hubble Space Telescope (HST) and Mission to Planet Earth (MTPE). Although expert systems to detect anomalous behavior of satellites during operations are established, diagnosis of the anomaly is a complex procedure and is a new development

    Stormtime transport of ring current and radiation belt ions

    Get PDF
    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced

    Stormtime ring current and radiation belt ion transport: Simulations and interpretations

    Get PDF
    We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current

    Technologies of contraception and abortion

    Get PDF
    Soon to turn 60, the oral contraceptive pill still dominates histories of technology in the ‘sexual revolution’ and after. ‘The pill’ was revolutionary for many, though by no means all, women in the west, but there have always been alternatives, and looking globally yields a different picture. The condom, intrauterine device (IUD), surgical sterilization (male and female) and abortion were all transformed in the twentieth century, some more than once. Today, female sterilization (tubal ligation) and IUDs are the world's most commonly used technologies of contraception. The pill is in third place, followed closely by the condom. Long-acting hormonal injections are most frequently used in parts of Africa, male sterilization by vasectomy is unusually prevalent in Britain, and about one in five pregnancies worldwide ends in induced abortion. Though contraceptive use has generally increased in recent decades, the disparity between rich and poor countries is striking: the former tend to use condoms and pills, the latter sterilization and IUDs. Contraception, a term dating from the late nineteenth century and since then often conflated with abortion, has existed in many forms, and techniques have changed and proliferated over time. Diverse local cultures have embraced new technologies while maintaining older practices. Focusing on Britain and the United States, with excursions to India, China and France, this chapter shows how the patterns observed today were established and stabilized, often despite persistent criticism and reform efforts. By examining past innovation, and the distribution and use of a variety of tools and techniques, it reconsiders some widely held assumptions about what counts as revolutionary and for whom. Analytically, it takes up and reflects on one of the main issues raised by feminists and social historians: the agency of users as patients and consumers faced with choice and coercion. By examining practices of contraception alongside those of abortion, it revisits the knotty question of technology in the sexual revolution and the related themes of medical, legal, religious and political forms of control
    corecore