NT 6-CR 5083

Stormtime Ring Current and Radiation Belt

 Ion Transport: Simulations and Interpretations1 May 1995

Prepared by
M. W. CHEN, M. SCHULZ, L. R. LYONS, and D. J. GORNEY

Space and Environment Technology Center
Technology Operations

Prepared for
NASA Goddard Space Flight Center Greenbelt, MD 20771

Grant No. NAGW-2126

Engineering and Technology Group

TECHNOLOGY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializıng in advanced military space systems. The Corporation's Technology Operations supports the effective and timely development and operation of national secunty systems through scientific research and the application of advanced technology. Vital to the success of the Corporation is the technical staff's wide-ranging expertise and its ability to stay abreast of new technological developments and program support issues associated with rapidly evolving space systems. Contributing capabilites are provided by these individual Technology Centers:

Electronics Technology Center: Microelectronics, VLSI relability, failure analysis, sold-state device physics, compound semiconductors, radiation effects, infrared and CCD detector devices, Micro-Electro-Mechanical Systems (MEMS), and data storage and display technologies, lasers and electro-optucs, solid state laser design, micro-optics, optical communications, and fiber optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR/LADAR remote sensing, solar cell and array testung and evaluation, battery electrochemistry, battery testing and evaluation.

Mechanics and Materials Technology Center: Evaluation and charactenzation of new materals: metals, alloys, ceramics, polymers and their composites, and new forms of carbon; development and analysis of thin films and deposition techniques; nondestructive evaluation, component falure analysis and reliability; fracture mechanics and stress corrosion; development and evaluation of hardened components; analysis and evaluation of materials at cryogenic and elevated temperatures; launch vehicle and reentry flud mechanics, heat transfer and flight dynamics; chemical and electnc propulsion; spacecraft structural mechanics, spacecraft survivability and vulnerability assessment; contamination, thermal and structural control; high temperature thermomechanics, gas kinetics and radiation; lubrication and surface phenomena.

Space and Environment Technology Center: Magnetosphenc, auroral and cosmic ray physics, wave-particle interactoons, magnetospheric plasma waves; atmospheric and ionospheric physics, density and composition of the upper atmosphere, remote sensing using atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis; effects of solar activity, magnetic storms and nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate radiations on space systems, space instrumentation; propellant chemistry, chemical dynamics, environmental chemistry, trace detection; atmosphenc chemical reactions, atmospheric optics, hght scattenng, state-specific chemical reactions and radiative signatures of missile plumes, and sensor out-of-field-of-view rejection.

STORMTIME RING CURRENT AND RADIATION BELT ION TRANSPORT: SIMULATIONS AND INTERPRETATIONS

Prepared by

M. W. Chen, M. Schulz, L. R. Lyons, and D. J. Gorney Space and Environment Technology Center
Technology Operations

1 May 1995

Engineering and Technology Group
THE AEROSPACE CORPORATION
El Segundo, CA 90245-4691

Prepared for

Greenbelt, MD 20771

Grant No. NAGW-2126

Prepared

M. W. Chen

Approved

A. B. Christensen, Principal Director Space and Environment Technology Center

Note

The material reproduced in this report originally appeared in Space Plasmas: Coupling. Between Small and Medium Scale Processes, Geophysical Monograph 86. The ATR is published to document the work for the corporate record.

This Page Intentionally Left Blank

Stormtime Ring Current and Radiation Belt Ion Transport: Simulations and Interpretations

Margaret W Chen, Michael Schulz ${ }^{1}$, Larry R Lyons, and David J Gorney
Space and Environment Technology Center, The Aerospace Corporatron, El Segundo, Calıforna

Abstract

We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (eg, with the quasilinear theory of radial diffusion) We find that $10-145-\mathrm{keV}$ ions gain access to $L \sim 3$, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths Conversely, the transport of higher-energy ions ($\gtrsim 145 \mathrm{keV}$ at $L \sim 3$) turns out to resemble radial diffusion The quasilnear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for $\gtrsim 145-k e V$ sons, even for the case of an individual storm For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients $D_{L L}^{s 2 m}$ obtained from the sumulations and the quasilinear diffusion coefficient $D_{L L}^{q l}$ amount to factors of $23,23,15$, and 30 , respectively We have found that these discrepancies between $D_{L L}^{82 m}$ and $D_{L L}^{q l}$ can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in $D_{L L}^{q L}$ The mean of the remaining discrepancres between $D_{L L}^{s z m}$ and $D_{L L}^{q L}$ for the 4 different storms then amount to factors of $19,21,15$, and 27 , respectively We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (eg, reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 12 without impulse-amplitude reduction) We use our simulation results also to map phase-space densities f in accordance with Liouvile's theorem We find that the stormtıme transport of $\gtrsim 145-\mathrm{keV}$ ions produces hittle change in \bar{f} the drift-averaged phase-space density on any drift shell of interest However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies $\sim 30-145 \mathrm{keV}$, which are representative of the stormtime ring current

1 Introduction

This work is an outgrowth of our continuing study of energetic charged-particle transport in the magnetosphere. The study began as an effort to understand the development of the stormtime ring current but has expanded to include the radial diffusion of radiationbelt ions Our study entails a guiding-center simulation of particle motion in the presence of a succession of substorm-associated impulsive enhancements in the magnetospheric convection electric field We synthesize our model storms by means of a random-number

[^0]Space Plasmas Couplıng Between Small
and Medium Scale Processes
Geophysical Monograph 86
Copynght 1995 by the Amencan Geophysical Union
generator and apply them to a simple magnetospheric model in order to make the storm effects realistic but mathematically analyzable

We have found, in agreement with Lyons and Willuams [1980], that the access of $\sim 10-145 \mathrm{keV}$ ions (having first adiabatic invariants $\mu \sim 1-13 \mathrm{MeV} / \mathrm{G}$) to the region ($L \sim 3$) where they can form the stormtime ring current occurs largely as a consequence of the enhanced mean-value of the convection electric field rather than from its impulsive character Indeed, most of the particles in this energy range that reach $L \sim 3$ in our model storm turn out to have been transported there from outside the (trapping) region in which particles execute closed drift paths Conversely, the transport of higher-energy particles (having, for example, \gtrsim 145 keV at $L \sim 3$) turns out to resemble radial diffusion across closed drift paths [cf Lyons and Schulz, 1989]

By having formulated the model storm in an eas-
nly analyzed way, we are able to compare the radial diffusion coefficients obtained from our guiding-center simulation with the predictions of quasilnear theory [eg, Falthammar, 1965, Cornwall, 1968] and various refinements thereof We find that the quasilinear diffusion coefficient calculated for any of our model storms shows a remarkably unsmooth variation with particle energy because the impulses occur at specific (although randomly determined) times Despite this, quasilinear theory provides a surprisingly accurate description of the transport process for $\gtrsim 145-\mathrm{keV}$ ions, even for the case of an individual storm As expected, the agreement becomes even better when we reduce the impulse amplitudes systematically in a given model storm, and also when we average our results over an ensemble of model storms constructed by the same (random) method

Of course, a radial diffusion coefficient is not defined for transport from open to closed drift trajectories, such as we have found to occur for lons having 30 $\mathrm{keV} \lesssim E \lesssim 145 \mathrm{keV}$ For these energes, however, we find a major increase in the drift-averaged phase space density \bar{f} from its pre-storm value upon mapping $f \mathrm{in}$ accordance with Liouville's theorem Particle energies $30-150 \mathrm{keV}$ have been shown by many observational studies [eg, Frank, 1967, Smith and Hoffman, 1974, Willzams and Lyons, 1974, Lyons and Willams, 1976, Hamzlton et al., 1988] to be representative of the stormtime ring current as a whole In contrast, we find little change in drift-averaged phase-space density as a consequence of stormtime transport for ions having $\mu \gtrsim 13$ $\mathrm{MeV} / \mathrm{G}(E \gtrsim 145 \mathrm{keV}$ at $R=3$), for which the transport is diffusive

2 Field Model

The magnetic field model that we use in this study is obtanned by adding a uniform southward field ΔB to the geomagnetic dipole field We invoke this simple field configuration because it enables us to make direct comparisons between the simulated transport and prevous analytical formulations An advantage of our model over a purely dipolar field is the presence of a quast-magnetopause at the boundary between closed and open field lines (see Figure 1). The equation of a field line in this model is

$$
\begin{equation*}
\left[1+05(r / b)^{3}\right]^{-1}\left(r / R_{E}\right) \csc ^{2} \theta=\text { constant } \equiv L \tag{1}
\end{equation*}
$$

where r is the geocentric distance, θ is the magnetic colatitude, R_{E} is the radius of the Earth, and $b=$ $15 L^{*} R_{E}=1282 R_{E}$ is the raduus of the equatorial neutral line This value of b which is obtaned by mapping the last closed field line (denoted L^{*}) to a colat1tude of 20° on the Earth, corresponds to $|\Delta B|=14474$ nT and $L^{*}=8547$ The limit $b \rightarrow \infty\left(L^{*} \rightarrow \infty\right)$ would correspond to a purely dipolar B field In this study, we

Fig 1 An illustration of the magnetospheric B-field model used in this study The model is symmetric about the $\sin \theta=0$ axis and about the equatorial plane, which contains a circular neutral line at $r=b$ on the magnetic shell $L=L^{*}$, which approaches an asymptotic distance ρ^{*} from the tail axis at large distances $|z|$ from the equatorial plane
consider only equatorially mirroring particles in which the equatorial field intensity B_{0} is given by

$$
\begin{equation*}
B_{0}=\left(\mu_{E} / r^{3}\right)-14474 \mathrm{nT}, \tag{2}
\end{equation*}
$$

where $\mu_{E}=305 \times 10^{4} \mathrm{nT}-R_{E}^{3}$ is the geomagnetic dipole moment Further details of this field model are given by Schulz [1991, pp 98-110]

We assume that the total electric field $\mathbf{E}=-\nabla \Phi_{E}$ is derivable from the scalar potential

$$
\begin{equation*}
\Phi_{E}=-\frac{V_{\Omega}}{L}+\frac{V_{0}}{2}\left(\frac{L}{L^{*}}\right)^{2} \sin \phi+\frac{\Delta V(t)}{2}\left(\frac{L}{L^{*}}\right) \sin \phi \tag{3}
\end{equation*}
$$

in which the three separate terms correspond to corotation ($V_{\Omega}=90 \mathrm{kV}$), the Volland-Stern [Volland, 1973, Stern, 1975] model of quescent convection ($V_{0}=50$ kV), and the tume-dependent enhancement $\Delta V(t)$ associated with the stormtime convection, respectively The time-varyng term in the potential is assumed to vary as L [cf Nishuda, 1966, Brice, 1967] rather than as L^{2} because electric disturbances are expected to be less well shielded than steady-state convection by the inner magnetosphere

We model the storm-associated enhancement $\Delta V(t)$ in the cross-tall potential drop,

$$
\begin{equation*}
\Delta V(t)=\sum_{i=1}^{N} \Delta V_{\imath} \exp \left[\left(t_{i}-t\right) / \tau\right] \theta\left(t-t_{\imath}\right) \tag{4}
\end{equation*}
$$

where $\theta(t)$ is the unit step function ($\equiv 1$ for $t \geq 0, \equiv 0$ for $t<0$), as a superposition of almost randomly occurring impulses that rise sharply and decay exponentially with a "lifetime" $\tau=20 \mathrm{~min}$ [cf Cornwall, 1968] The impulses represent the constituent substorms of a storm The potential drop ΔV_{\imath} associated with any individual impulse is chosen randomly from a Gaussian distribution with a $200-\mathrm{kV}$ mean and a $50-\mathrm{kV}$ standard deviation We have chosen such a large mean value of ΔV_{i} since our intention is to model a major ($\left|D_{s t}\right| \sim$ 200 nT) storm, such as those which Lyons and Willams [1980] analyzed Since those storms had a main phase lasting $\sim 3 \mathrm{hr}$, we assume that the N start times t_{2} in (4) are randomly distributed within a 3 -hr time interval corresponding to the main phase of a storm However, we impose a $10-\mathrm{min}$ "dead time" (after each impulse onset) during which no subsequent impulse can start This constraint imposes a seemingly reahistic delay between consecutive impulse onsets Without such a dead-time it would be possible for the next impulse to start immediately after the previous one, and this could lead to the build-up of unrealistically large crosstail potentials Further details of this model storm are given in [Chen et al., 1992b]

We have constructed 100 such random storms so that on average there are 9 impulses per storm or 3 substorms/hr We have done this by generating 1800 random numbers between 0 and 100 and disqualifying about half of these through the dead-time constraint We have randomly chosen four model storms for detalled case studies Figure 2 shows the variation in cross-tal potential for these prototypical storms The mean enhancement in cross-tall potential drop for these particular storms over the time interval $t_{1}<t<t_{1}+3$ hr are $\langle\Delta V(t)\rangle=180 \mathrm{kV}, 178 \mathrm{kV}, 154 \mathrm{kV}$, and 207 $k V$, respectively Since we choose to average over the period t_{1} to $t_{1}+3 \mathrm{hr}$, we may be excluding a sigmificant portion of the last impulse Thus, defined in this way, the average cross-tal potential drops are typically somewhat less than 200 kV

3 Particle Dynamics

Since we simulate the guding-center motion of nonrelativistic equatorially mirroring particles, we treat the first two adıabatic invariants ($\mu \neq 0$ and $J=0$, respectively) as conserved quantities It follows from (2)-(4) that the guding-center motion of an equatorially mirroring particle subject to $\mathbf{E} \times \mathbf{B}$ and gradient- B drıfts is described by

$$
\begin{equation*}
\frac{d L}{d t}=\frac{L^{2} \cos \phi}{2 \mu_{E} R_{E}{ }^{2}}\left[V_{0}\left(\frac{L}{L^{*}}\right)^{2}+\Delta V(t)\left(\frac{L}{L^{*}}\right)\right] \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{d \phi}{d t}= & \Omega-3 \frac{\mu \mu_{E}}{q B_{0} r^{5}} \\
& -\frac{R_{E}}{\mu_{E}}\left[V_{0}\left(\frac{L}{L^{*}}\right)^{2}+\frac{\Delta V(t)}{2}\left(\frac{L}{L^{*}}\right)\right] L \sin \phi \tag{6}
\end{align*}
$$

where Ω is the angular velocity of the Earth, q is the charge of the particle, and ϕ is the azımuthal coordinate (local time)

We solve the ordinary differential equations (5) and (6) simultaneously by using the Bulirsh-Stoer extrapolation method with variable time-step [eg, Press et al., 1986, pp 563-568] for specified initial conditions First we obtain steady-state adıabatic drift paths associated with a particular value of the first adiabatic invariant μ by setting $\Delta V(t)=0 \mathrm{in}$ (5) and (6) Next, to study the effects of a time-dependent cross-tall potential, we start representative particles at points equally spaced in time on a steady-state drift path We do this for the purpose of properly calculating a radial diffusion coefficient and for obtaining drift-averaged phase space densities (see below) (We note that this method differs from previous simulation studies [eg,Smith et al., 1979, Lee et al., 1983, Takahashi, 1990] in which particles are injected from a nightside boundary) We then apply (4), which prescribes a storm-associated variation $\Delta V(t)$ in the cross-tall potential drop and run the simulation to determine the consequent stormtime particle transport We can run the simulation either backward in time (to determine where any representative particle must have been prior to the storm in order to reach the desired phase on its "final" drift shell) or forward in time (to follow the dispersal of initially co-drifting particles among drift shells during and after the storm)

4 Simulated Guiding-Center Trajectories

In this section we present results of simulated stormtime transport of singly charged ions having various μ values and vanishing second invariant ($J=0$) For illustrative purposes, we present only the results that were obtained when we apphed the model storm $(\langle\Delta V(t)\rangle=180 \mathrm{kV})$ shown in Figure $2 a$ The dashed outer circle on each particle-trajectory plot shows the location of the neutral line, a circle of radius $R=1282$, which marks the boundary between open and closed magnetic field lines in our magnetic-field model (cf Figure 1) Figure $3 a$ illustrates steady-state trajectories of equatorially mirroring ions for $\mu=3 \mathrm{MeV} / \mathrm{G}$ This corresponds to an energy of 33 keV at a geocentric radıal distance $r=3 R_{E}$. For this particular μ value, an x-type separatrix marks the boundary between open and closed drift trajectories We label closed drift shells in terms of the dimensionless third adiabatic invariant defined by Roederer [1970, p 1078] as

$$
\begin{equation*}
\frac{1}{L} \equiv\left|\frac{\Phi_{B} R_{E}}{2 \pi \mu_{E}}\right|=\left[\frac{1}{2 \pi} \oint \frac{d \phi}{L(\phi)}\right] \tag{7}
\end{equation*}
$$

Fig 2 The cross-tall potential $V(t)$ in our model storm consists of a quescent value $V_{0}(=50 \mathrm{kV}$) and a superposition of exponentially decaying impulses (decay time $\tau=20 \mathrm{~min}$) These impulses represent the constituent substorms of a storm and start at times that are distributed randomly over a 3 -hr time interval, except that we impose (after the start of each impulse) a 10 -min "dead time" after the start of each impulse during which no subsequent impuke can start Four realizations of our model storm are shown The average enhancements $\langle\Delta V(t)\rangle$ in cross-tall potential drop over the respective 3-hr main phases are (a) 180 kV , (b) 178 kV , (c) 154 kV , and (d) 207 kV
where Φ_{B} is the magnetic flux enclosed by that drift shell and $L(\phi)$ denotes the field-line label at longitude ϕ on the drift shell In particular, we denote by L_{1} the drift shell that separates open and closed drift paths.

We have examined the access of ions to the quiescent drift shell that intersects the dusk mendian at $R \equiv$ $r / R_{E}=3$ for a range of μ values ($3 \mathrm{MeV} / \mathrm{G} \lesssim \mu \lesssim$ $200 \mathrm{MeV} / \mathrm{G}$) We select this drift shell because it is representative of where particles need to be transported in order to form the stormtime ring current We find the quescent ionic dift period τ_{3} to be 12 hr , which is longer than the assumed $3-\mathrm{hr}$ main phase Starting with 12 representative ions (as indicated by the filled circles) equally spaced in time on this drift path of interest, we have run the simulation backward in time

The time-reversed trajectories shown in Figure $3 b$ thus indicate where the particles must have been prior to the storm in order to have reached the final drift shell ($L \approx 3$) of interest We found that 3 of the 12 representative ions would have been transported outward from closed drift paths having smaller L values The
other 9 representative ions would have been transported inward from the night side along open trajectories to populate the final closed drift path Eight of these 9 representative ions would have come from beyond the boundary of our model We have compared the time ($\sim 1-13 \mathrm{hr}$) requred for these 8 representative ions to be transported inward from the neutral line to the final closed drift path of interest with the convection time [cf. Lyons and Wullams, 1980] obtained by integrating (5) whle keeping cos ϕ constant in time Although Lyons and Willsams [1980] had envisioned direct-convective access from closed drift trajectories, we have found that the direct convective access occurs mainly along open drift trajectories from the neutral line However, the access times obtamed for the simulated trajectories agree reasonably well in most cases with estimates based on direet-convective access Agreement is especially good for ions transported from the nughtside neutral line to the vicinty of the final drift path of interest in the quadrant centered on midnght Agreement was not as good for ions that had drifted to other local times be-

Fig 3 Quiet-time equatorial trajectories of singly charged rons having $\mu=3,10$ and $30 \mathrm{MeV} / \mathrm{G}$ are plotted in the upper panels The outer dashed circle represents the neutral line at $r=b$ lons whose drift paths cross the dusk meridian at $R=3$ have drift periods τ_{3} as noted The 12 representative ions' "final" positions on the steady-state drift path of interest are denoted by small "filled" circles Corresponding stormtime trajectories computed in our time-reversed simulation are shown in the lower panels
fore reaching the vicinty of the final drift path during the storm Reasonably good agreement was typical for lower-energy ions ($E \sim 30-100 \mathrm{keV}$) [Chen et al., 1992b] and thus confirms convective access as their mode of transport

Equatorial steady-state drift paths for sons having $\mu=10 \mathrm{MeV} / \mathrm{G}$ or energies of 110 keV at $R=3$ are shown in Figure $3 c$ Again, in this case, an x-type separatrix marks the boundary between open and closed drift paths The quiescent drift period ($\tau_{3}=24 \mathrm{hr}$) for these ions on a drift shell that intersects the dusk meridian at $R=3$ is comparable to the duration of the storm's man phase

The time-reversed smulated stormtıme trajectories for $\mu=10 \mathrm{MeV} / \mathrm{G}$ are shown in Figure 3d At this μ value, only half of the representative ions have been transported to the final drift shell of interest by moving inward from the night side along open drift trajectones The other half have been transported from closed
drift paths of either smaller or larger L value Their stormtime transport beguns to resemble radial diffusion Thus, the mode of access of intermediate-energy ions to the stormtime ring current is transitional between convective and diffusive
Finally, we consider ions having $\mu=30 \mathrm{MeV} / \mathrm{G}$, which would correspond to energles of 335 keV at $R=$ 3. Steady-state ion drift paths are illustrated in Figure $3 e$ Here the boundary between open and closed drift paths is a closed drift path tangential to the neutral line [cf Brice and Ionannrdss, 1970, Schulz, 1976] Agann, we consider the access of ions to the drift path that intersects the dusk mendian at $R=3$ The quescent drift period ($\tau_{3}=073 \mathrm{hr}$) for ions on such a drift shell is less than $1 / 4$ of the man-phase duration
The simulated storm transports ions to the drift shell of interest from closed drift paths of either smaller or larger L value Thus, there is a spread among the initial L values of the representative particles (see Figure

3f) This transport resembles radial diffusion in this case, except that this was a time-reversed calculation We have also run a simulation forward in time, so as to follow the dispersal of ions from a common initial drift path Not surprisingly, the resulting stormtime transport generates a plot qualitatively simular to Figure $3 f$ although the time-forward simulation applies to an implicitly different set of particles from those followed in the time-reversed simulations Transport of the type illustrated in Figure $3 f$ was typical for ions having $\mu \gtrsim 13$ $\mathrm{MeV} / \mathrm{G}$, which corresponds to energies $\gtrsim 145 \mathrm{keV}$ at $R=3$

Figure 3 thus illustrates a range of modes of partıcle access to the stormtime ring current Ions having $\mu \lesssim 5 \mathrm{MeV} / \mathrm{G}(E \lesssim 30 \mathrm{keV}$ at $R=3$) undergo mainly direct convection from open (plasmasheet) drift paths to closed drift shells at $R \sim 3$, while ions having $\mu \gtrsim 13$ $\mathrm{MeV} / \mathrm{G}$ respond to the same enhancement of the convection electric field in a manner which resembles radial diffusion among closed drift shells [cf Lyons and Schulz, 1989] The transition between these two ideallzed modes of access occurs at $\mu \sim 5-13 \mathrm{MeV} / \mathrm{G}(E \sim$ $55-145 \mathrm{keV}$ at $R=3$) for ring-current particles whose quiescent drift periods are comparable to the duration of the model storm's main phase

5 Phase-Space Density Mapping

We have performed time-reversed ion simulations at additional μ values ($1 \mathrm{MeV} / \mathrm{G} \lesssim \mu \lesssim 100 \mathrm{MeV} / \mathrm{G}$) for the purpose of mapping phase space distributions in accordance with Liouvile's theorem to drift shells that intersect the dusk meridian at $R=3$ This requres that we specify the distribution at the neutral line before and during the storm, and the distribution on closed trajectories before the storm At the neutral line, we maintain an exponential spectrum

$$
\begin{equation*}
f^{*}=\exp \left(-\mu / \mu_{0}\right) \tag{8}
\end{equation*}
$$

for the phase-space density at the neutral hne and set $\mu_{0}=5 \mathrm{MeV} / \mathrm{G}$ This leads to a reasonable drop off of the boundary spectrum at hugh energies [cf Willaams, 1981] We neglect losses for the distribution along open trajectornes so that f^{*} specifies the phase space density everywhere beyond the boundary between open and closed drift trajectories (eg, see upper panels in Figure 2), which we label $L_{1}(\mu)$

We neglect Coulomb drag for simplicity and assume that the pre-storm transport of ions on closed trajectories is governed by an equation of the form

$$
\begin{equation*}
\frac{\partial \bar{f}}{\partial t}=L^{2}\left(\frac{\partial}{\partial L}\right)\left[\frac{D_{L L}}{L^{2}} \frac{\partial \bar{f}}{\partial L}\right]-\frac{\bar{f}}{\tau_{q}} \tag{9}
\end{equation*}
$$

where \bar{f} is the drift-averaged phase-space density at fixed μ and $J, D_{L L}$ is the diffusion coefficient for transport in L, and τ_{q} is the ionic lifetime against charge exchange The steady-state solution to (9), in which radial diffusion balances charge exchange, can be expressed in closed form in terms of modified Bessel functions of fractional order if $D_{L L}$ and τ_{q} vary as power laws in L [Haerendel, 1968] Thus, we seek to fit $D_{L L}$ and τ_{q} accordingly

We notice, from the plot of H^{+}charge exchange lifetime profiles (solid curves) reproduced from selected μ values from Cornwall [1972] in our Figure 4a, that τ_{q} tends to vary as a power law in L at the smaller L values Accordingly, we specify

$$
\begin{equation*}
\tau_{q} \approx L^{-8} 10^{3}(\mu / 4)^{4} \mathrm{day}^{-1} \tag{10}
\end{equation*}
$$

as a rough approximation corresponding to the dashed curves in Figure $4 a$ This is a farrly good fit to the charge exchange lifetımes taken from Cornwall [1972] for $L \lesssim(25 \mu)^{(2 / 5)}$, which covers most of the range of μ and L values of interest However, we hope to improve upon our fit of the charge exchange hfetimes in future work

Fig 4 (a) Profiles of H^{+}charge-exchange lifetımes (solid curves taken from Cornwall [1968]) for different values (indicated in $\mathrm{MeV} / \mathrm{G}$) of the first adiabatic invariant The formula given by (10) provides a farrly good power-law fit (L^{-8}, dashed lines) to τ_{q} for $L \leq(25 \mu)^{(2 / 5)}$ (b) Profiles of $D_{L L}^{-1}$, reciprocal of the standard diffusion coefficient given by (11), for selected values of μ (indicated in $\mathrm{MeV} / \mathrm{G}$) Dashed lines represent power-law (L^{-8}) fits specified by reciprocal of (12)

Similarly, we estimate a power law fit to the diffusion coefficlent The standard model [eg, Cornwall, 1972] leads to a diffusion coefficient of the form

$$
\begin{equation*}
D_{L L} \approx \frac{14 \times 10^{-5} L^{10}}{\mu^{2}+L^{4}} \mathrm{day}^{-1} \tag{11}
\end{equation*}
$$

where μ is in units of $\mathrm{MeV} / \mathrm{G}$ The solid curves in Figure $4 b$ are profiles of $D_{L L}^{-1}$ for selected μ values Because the diffusion coefficient varies as L^{6} for $L^{2} \gg \mu$ and as L^{10} for $L^{2} \ll \mu$, we have compromised on L^{8} in order to obtain a sangle power law We thus obtain a power-law "fit"

$$
\begin{equation*}
D_{L L} \approx 7 \times 10^{-6} \mu^{-1} L^{8} \mathrm{day}^{-1} \tag{12}
\end{equation*}
$$

to the radial diffusion coefficient by requiring that the dashed curves in Fugure $4 b$ be tangent to the corresponding solid curves at $L=\mu^{1 / 2}$ In the future, we plan to refine our power-law model for $D_{L L}$ (as well as for τ_{q}) However, for the present, our simplistic but reasonable power-law fits to the transport coefficients allow us to express the pre-storm phase-space distribution $f(\mu, L)$ by means of the equation

$$
\begin{align*}
& \left(\frac{L}{L_{1}}\right)^{5 / 2} \frac{f(\mu, L)}{f^{*}(\mu)}= \\
& {\left[\frac{I_{-5 / 2}(\theta) K_{-5 / 2}\left(\theta_{0}\right)-K_{-5 / 2}(\theta) I_{-5 / 2}\left(\theta_{0}\right)}{I_{-5 / 2}\left(\theta_{1}\right) K_{-5 / 2}\left(\theta_{0}\right)-K_{-5 / 2}\left(\theta_{1}\right) I_{-5 / 2}\left(\theta_{0}\right)}\right]} \tag{13}
\end{align*}
$$

where $\theta=L\left(\tau_{q} D_{L L}\right)^{-1 / 2}$ and $\tau_{q} D_{L L}$ depends only on μ The inner boundary θ_{0} in (13) corresponds to the drift shell that grazes the Earth's atmosphere We ob$\tan L_{0}$ as a very weak function of μ for this purpose by evaluating (7) for the drift shell that intersects the dusk meridian at $R=1.1$ The outer boundary $\theta_{1} \mathrm{in}$ (13) corresponds to the separatrix $L_{1}(\mu)$ between closed and open drift paths (cf Figure 3, upper panels)

Using (8) and (13), we plot (see Figure 5) the prestorm phase-space densty spectrum $f(\mu, L)$ for the drift shell that intersects the dusk meridian at $R=$ 3 We distingursh between values of $f(\mu, L)$ on open (dashed curve) and closed (sohd curve) drift trajectories ($\mu=27 \mathrm{MeV} / \mathrm{G}$ is the smallest first invariant for which the trajectories that drift through the dusk mendian at $R=3$ are closed) Our simple model reproduces essential features simular to those found in proton phase-space distributions obtaned by Willams [1981] from ISEE 1 data. At the higher μ values for which radual diffusion dominates charge exchange, the spectrum drops off like our exponential boundary spectrum The spectral peak (found at $\mu \sim 22 \mathrm{MeV} / \mathrm{G}$) had been anticpated by Spjeldvrk [1977] and occurs manly because the charge-exchange lifetime decreases with decreasing

Fig 5 The pre-storm phase space density \bar{f} spectrum for ions that drift through the dusk meridıan at $R=3$ is represented by the plotted curve The solid and dashed portions of the curve correspond to closed and open drift trajectories, respectively The drift-averaged phase-space density distribution (filled circles) denoted post-main-phase is obtained by averaging the mapped values of f for the 24 representative ions
μ However, since $L_{1}(\mu)$ also varies directly with μ for $\mu \gtrsim 1 \mathrm{MeV} / \mathrm{G}$, ions having small μ values do not have to duffuse as far from their boundary between closed and open drift paths in order to reach $R=3$ (cf upper panels in Figure 3) For this reason the solution specified by (13) rises agann at low μ to jom the exponential boundary spectrum (dashed curve) which corresponds to ions on open drift paths

We have unvoked Liouvile's theorem to map the phase-space f for each representative ion from (8) and (13) For this portion of the study, we employ timereversed tracings of 24 (cf Figure 3), rather than 12, representative ions from end-point phases equally spaced in time on a drift shell that intersects the dusk meridan at $R=3$ By averaging the mapped f values for all the 24 representative ions we obtain a good estimate of the drift-averaged phase-space density \bar{f} (filled carcles in Figure 5) attaned upon completion of the man phase of the model storm Our approach differs from that of Kistler et al. [1989] who made point-topoint mappings of phase space distributions at various local times using pre-storm spectra obtaned from AMPTE data.

We find a major enhancement from the pre-storm phase-space for $\mu \sim 3-13 \mathrm{MeV} / \mathrm{G}$ This range corresponds to energles $\sim 30-150 \mathrm{keV}$, which are known to be representative of the stormtıme ring current [eg,

Lyons and Walluams, 1976, Willams, 1981, Kistler et al, 1989] Moreover, these are energies for which our simulations have shown that ion transport to $L \sim 3$ occurs largely from open trajectories (e g, Figure 3b) In contrast, for $\mu \gtrsim 13 \mathrm{MeV} / \mathrm{G}(E \gtrsim 145 \mathrm{keV}$ at $R=3)$ we find little change in $\bar{f}(\mu, L)$ as a consequence of the transport associated with a single storm This range corresponds to particles whose transport resembles radial diffusion (e g, Figure 2f)

We find our preliminary results of mapping phasespace densities to be particularly satisfying since they are consistent with many observed features of ring-current phase-space distributions Thus, we are extending this study to other L-shells of interest In addition, we are refinung our model for the pre-storm and boundary phase-space distributions and will report on the results in the near future

6 Diffusion and Quasi-Diffusion Coefficients

Although the higher-energy ions ($E \gtrsim 145 \mathrm{keV}$) do not seem to contribute much to the stormtime ring cuirent, their diffusive transport is nevertheless interesting in the radiation-belt context Thus, we have made detailed quantitative comparisons of diffusion coefficients obtained from our simulations with predictions from the quasilmear theory of Falthammar [1968] For this purpose, we consider four realizations (shown in Figure 2) of our random storm model These were randomly chosen from the 100 storms that we had originally generated

For each realization of our model storm, we have computed diffusion coefficients for selected values of μ (such that $15 \mathrm{MeV} / \mathrm{G} \lesssim \mu \lesssim 200 \mathrm{MeV} / \mathrm{G}$) from the distribution of initial L values of the time-reversed trajectories (see Figure 3f) We have done this by constructing the quantity

$$
\begin{align*}
& D_{L L}^{s z m} \equiv \\
& \left(\frac{L^{4}}{24 T}\right)\left[\sum_{z=1}^{12}\left(L_{2}^{-1}-L_{f}^{-1}\right)^{2}-\left[\sum_{z=1}^{12}\left(L_{z}^{-1}-L_{f}^{-1}\right)\right]^{2}\right] \tag{14}
\end{align*}
$$

where L_{z} and L_{f} denote the drift-shell labels of the imtial and final trajectories (respectively) of the 12 representative ions, and where $T(=3 \mathrm{hr})$ denotes the duration of the main phase of the model storm The quantity $D_{L L}^{s i m}$ is thus a measure of the variance among the initial third adiabatic invariants of particles situated on the final drift shell of interest We also computed diffusion coefficients $D_{L L}^{s 2 m}$ from time-forward simulations by interchanging the indices t and f in (14) The diffusion coefficients $D_{L L}^{s 2 m}$ obtained from simulations run forward and backward in time are not very different, 80% of them being within a factor of 16 of each other, although they pertain implicitly to different sets of par-
ticles The geometric mean discrepancies (among the 12 values of μ) between the values of $D_{L L}^{s 2 m}$ obtained from simulations run forward and backward in time amounted to factors of $13,16,15$, and 18 for the four model storms in Figure 2

We compare the diffusion coefficients obtained from the simulated trajectories with the resonant-particle formulation [Falthammar, 1965] of radial-diffusion theory in which the diffusion coefficient is of the form

$$
\begin{equation*}
D_{L L}^{q l}=\frac{L^{6} R_{E}^{4}}{4 \mu_{E}^{2}} \hat{E}\left(\frac{\Omega_{3}}{2 \pi}\right) \tag{15}
\end{equation*}
$$

where $\hat{E}(\omega / 2 \pi)$ is the spectral-density of the (quasiuniform) equatorial electric field in the inner magnetosphere and $\Omega_{3} / 2 \pi$ is the particles' quescent drift frequency When we substitute the spectral-density function for our model storm (see Chen et al. [1992b] for derivation) into (15), we obtain the quasilinear diffusion coefficient

$$
\begin{equation*}
D_{L L}^{q l}=\frac{\tau^{2} L^{6} R_{E}^{2}}{16 T \mu_{E}^{2}\left(L^{*}\right)^{2}} \sum_{\imath=1}^{N} \sum_{j=1}^{N} \frac{\Delta V_{\imath} \Delta V_{\jmath} \cos \left[\Omega_{3}\left(t_{\jmath}-t_{\imath}\right)\right]}{1+\Omega_{3}^{2} \tau^{2}} \tag{16}
\end{equation*}
$$

in which correlations between the impulses lead to cross terms $(\jmath \neq \imath)$ By neglecting the cross terms, we could recover essentially the standard diffusion coefficient of Cornwall [1968], but here we retain all the cross terms in (16) for comparison with $D_{L L}^{s 2 m}$ as computed for individual storms

The dashed curves in Figure 6 represent the quasilinear diffusion coefficients at $L \approx 3$ for the corresponding four model storms shown in Figure 2 The respective quasilinear diffusion coefficients are not very smooth functions of μ This is because the impulse onsets (i) associated with any individual storm modeled by (4) occur at specific (although randomly determined) times t_{k}, which means that the corresponding spectral density $E(\omega / 2 \pi)$ is not a very smooth function of frequency We plot as data points in Figure 6 the diffusion coefficients $D_{L L}^{s 2 m}$ obtained from simulations run forward (filled circles) and backward (open circles) in time For comparison purposes, we chose some of the μ values to correspond with the minima in $D_{L L}^{q l}$ in case (a) Agreement of the diffusion coefficients $D_{L L}^{s t m}$ obtained from the simulations with quasilinear theory is surprisingly good despite the strong variability of $D_{L L}^{q l}$ with μ For cases (a)-(d), we find that the geometric means of the discrepancies amount to factors of $23,23,15$, and 30 , respectively Agreement is best for case (c), in which there were only 7 substorms during the model storm (see Figure 2c) and consequently less variability in $D_{L L}^{q l}$ with μ We find that quasilinear theory even accounts for the μ values (eg, $\mu=75$ and $80 \mathrm{MeV} / \mathrm{G}$ in Figure

Fig 6 Plots of diffusion coefficients $D_{L L}^{a z m}$ obtained via (14) from time-reversed (open carcles) and tume-forward (filled circles) simulations, for companson with the quasilinear diffusion coefficient $D_{L L}^{q l}$ (dashed curve) given by (16) as an implicit function of μ for the four realizations of our model storm shown in Figure 2 The diffusion coefficients $D_{L L}^{\text {rb }}$ (corrected for resonance-broadening) are represented by the sold curves

6a) for which the diffusion coefficients computed from the simulation are especially small

However, the diffusion coefficients obtained from the sumulated trajectories generally do not show quite as much variability with μ as quasilinear theory predicts This is not surprising, since quasilinear theory postulates a perfectly sharp resonance at the quescent drift frequency, whereas the simulated transport leads to an eventual spread among the quescent drift frequencies of the representative ions for each μ A rough estimate for the anticipated spread in $\Omega_{3} / 2 \pi$ is

$$
\begin{equation*}
\Delta \omega / 2 \pi \approx\left(D_{L L} T / 2 \pi^{2}\right)^{1 / 2}\left|\left(\partial \Omega_{3} / \partial L\right)_{\mu}\right| \tag{17}
\end{equation*}
$$

since the mean-square spread in L accumulated during the transport is $2 D_{L L} T$ [Chen et al., 1992a] An estimate for the diffusion coefficient (corrected for reso-nance-broadening effects) is thus

$$
\begin{equation*}
D_{L L} \approx \frac{L^{6} R_{E}^{4}}{4 \mu_{E}^{2} \Delta \omega} \int_{\Omega_{3}-(\Delta \omega / 2)}^{\Omega_{3}+(\Delta \omega / 2)} \hat{E}\left(\frac{\omega}{2 \pi}\right) d \omega \tag{18}
\end{equation*}
$$

Since the frequency bandwidth given by (17) depends on $D_{L L}$, we have iterated between (18) and (17) until satisfactory convergence to the desired solution (called $D_{L L}^{r b}$) is achueved The results for cases (a)-(d) are plotted as solid curves in Figure 6 We find that inclusion
of this nonlmear resonance-broadening effect tends to reduce the discrepancy between quasilinear theory and $D_{L L}^{s s m}$ by a smoothing out the sharp relative maxima and minima with respect to μ Corrections were typically $\sim 10-30 \%$ at the relative maxima but were as much as 60% at the relative minima (e g , near $\mu=184$ $\mathrm{MeV} / \mathrm{G}$ in Figure 6a). The geometric means of the remaining discrepancies between $D_{L L}^{r b}$ and $D_{L L}^{s z m}$ amount to factors of $19,21,15$, and 27 for cases (a)-(d), respectively To determine whether the remaining discrepancies are attributable to the neglect of nonlinear and/or quasilinear effects, we have made similar comparisons after reducing the impulse amplitudes of the enhanced cross-tall potential drop $\Delta V(t)$ in our model storms

Figures $7 a$ and $7 b$ show comparisons of $D_{L L}^{s 2 m}$ and $D_{L L}^{r b}$ when the enhanced cross-tall potential drop ΔV for case (a) is reduced by a factors of 2 and 4, respectively When the average stormtime cross-tall potential drop decreases, the agreement between $D_{L L}^{q}$ and $D_{L L}^{s ı m}$ improves considerably The geometric-mean discrepancy amounts to a factor of 14 or 11 , respectively, when $\Delta V(t)$ is reduced by a factor of 2 or 4 The agreement is quite good despite the fact that the quasilinear diffusion coefficient does not vary smoothly with μ As the impulse amplitudes in $\Delta V(t)$ are reduced, corrections to $D_{L L}^{q l}$ due to resonance-broadening become

Fig 7 Plots of diffusion coefficients $D_{L L}^{s 2 m}$ obtained via (14) from time-reversed (open circles) and time-forward (filled circles) simulations, for comparison with the quasilinear diffusion coefficient $D_{L L}^{q l}$ (dashed curve) given by (16) as an implicit function of μ for storms that have the same temporal structure as model storm (a) in Figure 2, but with half (left panel) and a quarter (right panel) of the impulse amplitude in $\Delta V(t)$, respectively The average enhancements $\langle\Delta V(t)\rangle$ in cross-tail potential drop over the 3 -hr main phase are 90 kV and 45 kV , respectively The diffusion coefficients $D_{L L}^{r b}$ (corrected for resonance-broadening) are represented by the sold curves
smaller, as the convergence of the sold curve ($D_{L L}^{r b}$) toward the dashed curve ($D_{L L}^{a_{L}^{l}}$) in Figure $7 b$ shows Moreover, the agreement between diffusion coefficients obtanned from simulations run forward (filled circles) and backward (open circles) in time improves The geometric mean discrepancy between "time-forward" and "time-reversed" diffusion coefficients is only a factor of 12 when $\Delta V(t)$ is reduced by a factor of 2 and only a factor of 11 when $\Delta V(t)$ is reduced by a factor of 4 This improved agreement is not surprising since time reversal $(t \rightarrow-t)$ leaves the quasilinear theory diffusion coefficient invariant under time reversal As $\max [\Delta V(t)] \rightarrow 0$ quasilinear theory increasingly better approximates the simulated stormtime transport, and so the values of $D_{L L}^{s i m}$ estimated from simulations run forward and backward in time become less distinct from each other We thus conclude that the remaining discrepancies between $D_{L f}^{r b}$ and $D_{L L}^{s i m}$ are attributable to unspecified nonlinear effects of which we have not taken account
In a numerical "experiment" we found that excellent agreement between $D_{L L}^{r b}$ and $D_{L L}^{s i m}$ could be acheved by arbitrarly increasing $\Delta \omega / 2 \pi$ by a factor ~ 3 from the value specified by (17). However, we can think of no physical rationale for actually postulating such a magnufication of the bandwndth over which $D_{T L}^{q l}$ should be averaged We have considered the possibility that the temporal variation of $\Delta V(t)$ in (3) might increase the spread in drift frequencies during transport (ie, for $0<t \leqslant T$) beyond that implicti in (17), in which the factor $\left(\partial \Omega_{3} / \partial L\right)_{\mu}$ pertans to quescent drift frequencles The guiding-center simulations presented earher, however, show little evidence for such an effect Typlcally, the mean drift period of a representative ion during the man phase only slightly exceeds the quescent drift period, as it would if the ion were drifting under the influence of a constant enhancement $\Delta V=\langle\Delta V(t)\rangle$ of the cross-tall potential drop Thus, the $\Omega_{3} / 2 \pi$ which appears in (15)-(18) should perhaps have been interpreted as the mean main-phase drft frequency rather than as the quescent one This correction would appear to be small, corresponding to a rightward shift of the plotted curves in Figure 6 by $\Delta \mu \lesssim 1 \mathrm{MeV} / \mathrm{G}$ However, the stormtime presence of $\langle\Delta V(t)\rangle$ does transform the quiescent drift shell of interest into a stormtume band of drift shells over which $\hat{E}\left(\Omega_{3} / 2 \pi\right)$ should presumably be averaged We will explore the ramifications of this refinement elsewhere In our simulations the transport-induced spread in quescent drift frequencies has in some cases exceeded (17) by $\sim 40 \%$, but this magnification of $\Delta \omega / 2 \pi$ would be too little to eliminate the remaining discrepancies ~ 19 between $D_{L L}^{r b}$ and $D_{L L}^{s i m}$ in Figure 6 The very small change in the drift frequency during the storm also seems to eliminate the possibility of trapped-particle effects A prelıminary test suggests that the replacement of L^{6} in (15) by its
transport-averaged value $\left\langle L^{6}\right\rangle$ would also be a relatively unimportant nonlinear correction

7 Diffusion Averaged over Storm Ensemble

It could be argued that quasilnear theory is more appropriately applied to an ensemble of model storms than to an individual storm We have tested this hypothesis by randomly choosing 20 different storms having a $184-\mathrm{kV}$ mean cross-tall potential drop from the 100 storms that we constructed We averaged the diffusion coefficients obtained from the simulations, standard quasilnear theory, and the resonance-broadened quasilnear theory over the 20 storms The results are shown in Figure 8 [Chen et al, 1992b] The ensembleaveraged quasilinear diffusion coefficient $\bar{D}_{L L}^{q l}$ (dashed curve) and its resonance-broadened counterpart $\bar{D}_{L L}^{r b}$ (solid curve) are considerably smoother than $D_{L L}^{q l}$ and $D_{L L}^{r b}$, respectively, for an individual storm The ensem-ble-averaged diffusion coefficients $\bar{D}_{L L}^{\text {sim }}$ from the timereversed and time-forward simulations (open circles and filled circles, respectively) typically agree much better with the theoretical diffusion coefficients in Figure 8 than does $D_{L L}^{s 3 m}$ with the theoretical diffusion coefficlents for an individual storm in Figure 6 The mean discrepancy between $\bar{D}_{L L}^{s i m}$ and $\bar{D}_{L L}^{q l}$ is only a factor of 12

Fig 8 Ensemble-averaged diffusion coefficients $\bar{D}_{L L}^{2 z m}$ obtained from the time-reversed (open circles) and time-forward (filed circles) simulations, for comparison with quasilinear theory ($\bar{D}_{L L}^{q}{ }_{L}^{l}$ as a function of μ, dashed curve) for equivalent ensembles of 20 storms, but with impulse amplitudes halved and doubled relative to the middle family of curves and data points so as to produce the mean $\Delta V(t)$ values shown The solid curve represents the ensemble-averaged duffusion coefficients $\bar{D}_{L L}^{r b}$ corrected for resonance broadening effects

We have also halved the impulse amplitudes of ΔV in the 20 storms of our ensemble and averaged the resulting diffusion coefficients obtained over the 20 storms The results are shown via the middle family of curves and data points in Figure 8 As expected agreement between $\bar{D}_{L L}^{s i m}$ and $\bar{D}_{L L}^{q q}$ is even better (geometric-mean discrepancy is a factor of 11 for $\langle\Delta V(t)\rangle=92 \mathrm{ky}$ versus 12 for $\langle\Delta V(t)\rangle=184 \mathrm{kV})$ Corrections of $D_{L L}^{q l}$ due to resonance broadening are smaller in this case

When we reduce all the impulse amplitudes in $\Delta V(t)$ by a factor of 4 , we find remarkably good agreement among the ensemble-averaged diffusion coefficients obtained by the vanous methods For example, the geo-metric-mean discrepancy between $D_{L L}^{s 2 m}$ and $D_{L L}^{q l}$ amounts to a factor of 103 and the geometric-mean discrepancy between the diffusion coefficients deduced from time-forward and time-reversed simulations amounts to a factor of only 102 (see lower family of curves and data points, Figure 8)

8 Summary and Conclusions

We have used a dynamical guiding-center model to investigate energetic charged-particle transport in response to storm-associated impulses in a model of the convection electric field Our simple magnetospheric model allows us to compare our numerical results with analytical descriptions of particle transport such as the quasilinear theory of radial diffusion [Falthammar, 1965] Thus, we have tested whether quasilinear theory can appropriately be applied to describe the chargedparticle transport caused by electrostatic electric field fluctuations over time intervals as short as an individual storm Furthermore, we have begun to use our simulation results to map phase-space distributions from the quiet-time to the stormtime ring current by using Liouville's theorem A summary of our results follows
Ions having $\mu \lesssim 3 \mathrm{MeV} / \mathrm{G}(E \lesssim 110 \mathrm{keV}$ at $R=3$) gain access to closed drift shells at $R \sim 3$ mainly by direct convection from open (plasmasheet) drift paths At $L \sim 3$ these ions have drift periods that exceed the duration of the main phase of the storm The mode of access of ions with $\mu \sim 5-13 \mathrm{MeV} / \mathrm{G}(E \sim 55-145$ keV at $R=3$ appears to be transitional between convective and diffusive access At $L \sim 3$ these ions have drift periods that are comparable to the length of the main phase of the storm The stormtime transport of 1ons having $\mu \gtrsim 13 \mathrm{MeV} / \mathrm{G}(E \gtrsim 145 \mathrm{keV}$ at $R=3$) resembles radial diffusion across closed drift shells At $L \sim 3$ these ions have drift periods that are smaller than the duration of the main phase of the storm.

The electric spectral density derived from our model storm is not very smooth, and so the quasilinear diffusion coefficient $D_{L L}^{q l}$ does not vary smoothly with μ When we compared the diffusion coefficients $D_{L L}^{s 2 m}$ obtained from the simulated trajectories with the quasilinear diffusion coefficient $D_{L L}^{q l}(\mu, L)$, we nevertheless
found surpnisingly good agreement for 4 distinct individual model storms The aggregate geometric-mean of discrepancies between $D_{L L}^{s i m}$ and $D_{L L}^{q l}$ for the 4 storms amounted to a factor of 22 even though $D_{L L}^{q l}$ varied irregularly with μ by 4-5 orders of magnitude for each of the storms studied When we invoked nonlinear driftresonance broadening effects, we found that the discrepancles between quasilinear theory and $D_{L L}^{s 1 m}$ were slightly reduced through a smoothing of the sharp relative minima and maxima in $D_{L}^{q l}$. The aggregate geometric mean of the remaining discrepancies between $D_{L L}^{s 1 m}$ and $D_{L L}^{q L}$ for the 4 different storms amounted to a factor of 20 When we reduced the impulse amplitudes in the enhanced cross-tall potential drop $\Delta V(t)$ of our model storm, the agreement between $D_{L L}^{q l}$ and $D_{L L}^{s u m}$ improved considerably For example, the geometricmean discrepancy is a factor of 23,14 , and 11 , respectively for a particular storm with $\langle\Delta V\rangle=180 \mathrm{kV}$, 90 kV , and 45 kV This convergence towards 10 sug gests that the discrepancies between $D_{L L}^{s 2 m}$ and $D_{L L}^{q l}$ are attributable to nonlinear effects When we averaged $D_{L L}^{q l}$ and $D_{L L}^{s 2 m}$ obtained over an ensemble of 20 random storms, we found even better agreement between $\bar{D}_{L L}^{q l}$ and $\bar{D}_{L L}^{s s m}$ (mean discrepancy amounted to a factor of 12 for $\langle\Delta V(t)\rangle \approx 184 \mathrm{kV})$ When we reduced the impulse amplitudes in $\Delta V(t)$ for all the storms in the ensemble by a factor of 4 , we found remarkably good agreement between these ensemble-averaged diffusion coefficients (mean discrepancy factor was 102)

We developed a simple model of the pre-storm (steady-state) phase-space density, obtamed by balancing radial diffusion against charge exchange, which produces features qualitatively similar to those found in observations We used our time-reversed simulations to map phase space densities f from pre-storm to stormtime in accordance with Liouville's theorem The stormtime transport of ions having $\mu \gtrsim 13 \mathrm{MeV} / \mathrm{G}$ (E $\gtrsim 145 \mathrm{keV}$ at $R=3$), for which the transport resembles radial diffusion, seems to produce hittle change in driftaveraged phase space density \bar{f}. However, the stormtime transport of f produced a major enhancement in \bar{f} from the pre-storm phase-space density at energies $\sim 30-145 \mathrm{keV}$, which are representative of the stormtime ring current These are energies for which our simulations have shown that many of the ions are transported on the mightside from open trajectories to the final drift shell ($L \sim 3$) of interest

Our preliminary results on the mapping of phase space densities are particularly satisfying since they reproduce many observed features of ring-current phasespace distributions Thus, we are performing addrtional mappings to other L-shells of interest We plan to refine our treatment of the pre-storm and boundary phase-space distributions so as to achieve a more realistic model We also will include loss processes such as charge exchange in our simulations so that we can map
phase space distributions through the recovery phase as well as through the mann phase of a model geomagnetic storm

Acknowledgments The authors thank Wendall Horton for suggesting to decrease the amplitude of our electric field impulses in order to test for nonlinear effects Our work is supported by the NASA Space Physics Theory Program under grant NAGW-2126 One of the authors, Margaret W. Chen, was a National Research Council Research (NRC) Associate during this study Computing resources for this work were provided by the San Diego Supercomputer Center and by the NASA Center for Computational Sciences

References

Brice, N M, Bulk motion of the magnetosphere, J Geophys Res, 72, 5193-5211, 1967
Brice, N M , and G A Ioannidıs, The magnetospheres of Jupiter and Earth, Icarus, 13, 173, 1970
Chen, M W , M Schulz, L R. Lyons, and D J Gorney, Ion radıal diffusion in an electrostatic impulse model for stormintime ring current formation, Geophys Res Lett, 19, 621-624, 1992a.
Chen, M W , M Schulz, L R. Lyons, and D J Gorney, Stormtime transport of ring-current sons, re-submitted to J Geophys Res, August, $1992 b$.
Cornwall, J M, Dufusion processes influenced by conjugatepoint wave phenomena, Radro Sci, 3, 740-744, 1968
Cornwall, J M, Radial diffusion of ionized helium and protons A probe for magnetospheric dynamics, J Geophys Res, 77, 1756-1770, 1972
Dungey, \mathbf{J} W., Effects of electromagnetic perturbations on particles trapped in the radiation belts, Space Sci Rev, 4, 199-222, 1965
Falthammar, C-G , Effects of time-dependent electric fields on geomagnetically trapped radiation, J Geophys Res, 70, 25032516, 1965
Frank, L A, On the extraterrestrial ring current during geomagnetic storms, J Geophys Res, 72, 3753-3768, 1967
Haerendel, G , Diffusion theory of trapped particles and the observed proton distribution, in Earth's Particles and Frelds, edited by B M McCormac, pp 171-191, Reınhold, New York, 1968
Hamilton, D C, G Gloeckler, F M Ipavich, W Studemann, B Wilken, and G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J Geophys Res, 9S, 14,343-14,355, 1988
Kistler, L M, F M Ipavich, D C Hamilton, G Gloeckler, B Wilken, G Kremser, and W Stüdemann, Energy spectra of the major ion species in the ring current during geomagnetic storms, J Geophys Res, 94, 3579-3599, 1989
Lee, L C, G Corrick, and S-I Akasofu, On the ring current energy injection rate, Planet Space Sct, 31, 901-911, 1983

Lyons, L R., and M Schulz, Access of energetic particles to storm time ring current through enhanced radial "diffusion", J Geophys Res, 94, 5491-5496, 1989
Lyons, L R, and D J Williams, Storm associated variations of equatorially murroring ring current protons, $1-800 \mathrm{keV}$, at constant first adrabatic mvariant, J Geophys Res, 80, 216220, 1976
Lyons, L R., and D J Wilhams, A source for the geomagnetic storm main phase ring current, J Geophys Res, 85, 523-530, 1980
Nishida, A , Formation of a plasmapause, or magnetospheric plasma knee by combined action of magnetospheric convection and plasms escape from the tail, J Geophys Res, 71, 5669-5679, 1966
Roederer, J G., Dynamzcs of Geomagretrcally Trapped Radratron, Springer, Heidelberg, 1970
Schulz, M, Effect of drift-resonance broadening on radial diffusion in the magnetosphere, Astrophys Space Scz, 36, 455-458, 1975.

Schulz, M, Plasma boundaries in space in Physzcs of Solar Planetary Enveronments, edited by D J Williams, Vol 1, pp 491-504, Am Geophys Union, Washington, D C, 1976
Schulz, M, The magnetosphere, in Geomagnetism, edited by J A Jacobs, vol 4, pp 87-293, Academic Press, London, 1991
Smith, P H, and R. A Hoffman, Ring current particie distributrons during the magnetic storms of December 16-18, 1971, J Geophys Res, 78, 4731-4737, 1973
Smith, P H, N K Bewtra, and R A Hoffman, Motions of charged particles in the magnetosphere under the influence of a time-varying large scale convection electric field, in Quantitative Modeling of Magnetosphersc Processes, edited by W P Olson, pp 513-535, American Geophysical Union, Washington, D. C , 1979
Spjeldvik, W N, Equilibrium structure of equatorially mirroring radiation belt protons, J Geophys Res, 82, 2801-2808, 1977
Stern, D P, The motion of a protion in the equatorial magneto sphere, J Geophys Res, 80, 595-599, 1975
Takahashi, S, T Iyemori, and M Takedo, A simulation of the storm-time ring current, Planet Space Sci, 98, 1133-1141, 1990
Volland, H, A semiempirical model of large-scale magnetosphenc electric fields, J Geophys Res, 78, 171-180, 1973
Williams, D J , Phase space variations of near equatorially mirroning ring current ions, J Geophys Res, 86, 189-194, 1981
Willams, D J, and L R Lyons, The proton ring current and its interaction with the plasmapause Storm recovery phase, J Geophys Res, 79, 4195-4207, 1974

M W Chen, L R Lyons, and D J Gorney, The Aerospace Corporation, P O Box 92597, M2-260, Los Angeles, CA 90009 M Schulz, Lockheed Research Laboratory, Org 91-20, Bldg 255, 3241 Hanover Street, Palo Alto, CA 94304

End of Document

[^0]: ${ }^{1}$ Now at Locikeed Research Laboratory, Palo Alto, Calıfornia

